PHASE 2 GEOMORPHIC ASSESSMENT AND CORRIDOR PLANNING MCCABE'S BROOK WATERSHED CHARLOTTE AND SHELBURNE, VERMONT

FEBRUARY 10, 2012

Prepared for:

LaPlatte Watershed Partnership and Lewis Creek Association 442 Lewis Creek Road Charlotte, VT 05445

Prepared by:

MILONE & MACBROOM, INC. 1233 Shelburne Road, Suite 150 South Burlington, Vermont 05403 802.864.1600 www.miloneandmacbroom.com MMI #3452-13

CONTENTS

EXE	CUTIV	E SUMMARY	1
1.0	PRO	JECT OVERVIEW	1
2.0	BAC	KGROUND WATERSHED INFORMATION	1
	2.1	Geographic Setting	1
	2.2	Geologic Setting	3
	2.3	Fluvial Geomorphic Setting	3
	2.4	Hydrologic Setting	4
	2.5	Ecological Setting	5
	2.6	Water Quality	5
3.0	MET	HODOLOGY	6
	3.1	Field Assessment Methods	6
	3.2	Quality Assurance Methods	7
4.0	GEO	MORPHIC ASSESSMENT RESULTS	7
	4.1	T1.08	7
	4.2	T1.07	8
	4.3	T1.06	10
	4.4	T1.05	12
	4.5	T1.04	17
	4.6	T1.03	19
	4.7	T1.02	20
5.0	SUM	MARY OF ASSESSMENT RESULTS	21
	5.1	Geomorphic Results Summary	21
	5.2	Habitat Results Summary	23
	5.3	Bridge and Culvert Assessments	24
6.0	DEP.	ARTURE ANALYSIS AND STRESSOR IDENTIFICATION	25
	6.1	Hydrologic Regime Stressors	25
	6.2	Sediment Regime Stressors	
		6.2.1 Watershed Scale Sediment Regime Stressors	
		6.2.2 Reach Scale Sediment Regime Stressors	

	6.3	River Stressor Identification Summary	.38
	6.4	Constraints to Sediment Transport and Attenuation	.39
7.0 RECO		MINARY PROJECT IDENTIFICATION AND MANAGEMENT	.44
	7.1	 Watershed Level Management Options	.44 .45 .45
	7.2	Site Level Management Options	.46
8.0	REFE	RENCES	.57

APPENDICES

APPENDIX A: REACH LOCATION MAPS

APPENDIX B: DATA SUMMARY REPORTS

APPENDIX C: BRIDGE AND CULVERT ASSESSMENT REPORTS

APPENDIX D: MCCABE'S OVERVIEW MAP

ACKNOWLEDGEMENTS

The project was funded by the Lewis Creek Association through its grant with the Lake Champlain Basin Program. Marty Illick of the Lewis Creek Association coordinated this project in association with Andrea Morgante of the LaPlatte Watershed Partnership. Technical assistance was provided by Gretchen Alexander and Sacha Pealer of the Vermont Department of Environmental Conservation, Vermont Rivers Program and Eric Howe of the Lake Champlain Basin Program.

EXECUTIVE SUMMARY

The purpose of this study is to provide site level assessments to inform stream corridor planning and riparian management recommendations.

McCabe's Brook is a tributary of the LaPlatte River that flows through Charlotte and Shelburne, draining to Shelburne Bay. Shelburne Bay is a drinking water source for Chittenden County, so sediment and nutrient loading to the Bay is a concern. This project consisted of a Stream Geomorphic Assessment of McCabe's Brook (watershed area = 6.2 square miles, length = 8.3 miles) and river corridor planning to identify potential projects for conservation or restoration.

McCabe's Brook headwaters are dominated by flat wetlands in a primarily agricultural area in Charlotte. The upper reaches have significant impacts including historic channel straightening and dredging due to agricultural practices. The upper fluvial reaches were found to be in good or reference geomorphic condition, and are stable without significant transformational processes occurring. In Shelburne, the channel is in closer proximity to development and roads. The channel is in various stages of incision, widening, and planform change in this area. Downstream of the undersized Route 7 culvert, the channel has departed from a reference C-type channel to an F-type and was found to be in poor conditions.

Encroachments and channel modifications have been identified in the river corridor. There has been channel straightening in the upper watershed (T1.08), near Route 7 (T1.05A & T1.05B), and Shelburne Village (T1.03). Residential and municipal development in Shelburne Village has encroached on the channel. Undersized culverts are impacting sediment transport and aquatic organism passage at Route 7, Bostwick Road, Lime Kiln Road, and small farm crossings.

River conditions are being impacted by changes in hydrology caused by land use conversion away from natural vegetative cover. McCabe's Brook subwatersheds have low to moderate amounts of impervious cover except at the village center of Shelburne where impervious cover is up to 20%. Most subwatersheds have urban land cover of 9% or higher. Agriculture also influences stormwater runoff and sediment production and there is a high percentage of agriculture in all subwatersheds. A large number of stormwater inputs were identified in Shelburne Village (T1.03, T1.05B) and from the rural area near Lime Kiln Road (T1.06A). Previous water quality analysis as part of another project indicates that agricultural practices are likely impacting water quality downstream of Limekiln Road.

River corridor planning has led to general watershed recommendations for improvement of Drainage and Stormwater Management, Floodplain and River Corridor Planning and Protection, Buffer Establishment and Protection, and Stream Crossings. Site specific projects have been identified and prioritized based on the potential improvement in the river condition (Table ES-1). A constriction of the river channel and floodplain by the Route 7 embankment has been identified to be contributing to channel destabilization and creation of mass failures of the valley wall. Creation of a new compound channel and floodplain is recommended to remove the constriction and restore natural river processes while protecting Route 7. Bostwick Road is located at a critical break in slope in the valley and downstream of a massive sediment supply. Replacement is recommended because the culvert is undersized and created a sediment delta upstream, disrupting sediment supply to downstream reaches and potentially increasing incision downstream.

Priority Rank	River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Project Benefits
1	T1.05B/A #1	Route 7: The road embankment completely fills the floodplain at the crossing location. Downstream of the crossing the river turns and flows parallel to the embankment, where it is severely constricted by the embankment fill. Mass failures have resulted upstream and downstream of the constriction. Armor at toe of Route 7 embankment has some damage.	Remove Constriction / Floodplain Restoration: Remove constriction caused by embankment. Route 7 is a major travel corridor and unlikely to be re-routed or accommodate a narrower embankment. Explore creation of a compound channel with floodplain using undeveloped land on the opposite bank.	Improved sediment transport; reduced erosion risk; Improved floodplain attenuation.
2	T1.05A #4	Bostwick Road Culvert: This culvert is undersized and completely filling the floodplain with a tall embankment. The structure is accumulating debris upstream and has a very large cobble and gravel delta extending a few hundred feet upstream. Scour is occurring downstream and an outlet drop of 0.5 ft blocks AOP.	Replace Structures - The Bostwick Road culvert should be replaced with a larger structure than can accommodate sediment and flood water movement along with AOP.	Wildlife habitat connectivity; sediment continuity; reduce erosion risk.
3	T1.03 #3	At the Shelburne Town Garage and Wastewater Treatment Plant on Turtle Lane the riparian buffer is narrow and lacking natural vegetation. The buildings are less than 100 ft from river. Fill is visible at the top of the bank and storage of materials is in the floodplain. The riparian buffer is narrow and non-existent in locations.	Plant Stream Buffers / Restore Floodplain - Remove storage of materials and fill from the riparian zone behind the buildings. Plant woody stream buffers in riparian areas.	
4	T1.05B #5	Route 7: Culvert is undersized and the embankment fills the floodplain. Sediment is accumulating upstream.	Replace Structure - Replace culvert with a larger structure that will accommodate sediment transport.	Improved habitat. Wildlife habitat connectivity.
5	T1.08 #3	Pizzagalli Property: A farm road runs parallel to the channel. The road is raised and blocks access to the left floodplain. There is evidence of periodic dredging along with road maintenance. The channel has the form of a straight, wide, featureless ditch at the edge of the road. Natural vegetation and shade is minimal due to road location.	Restore Wetland Channel - Reconnect channel to left wetlands. This could mean abandoning or removing road where it prevents access to adjacent wetlands. Recommend no more dredging in channel. Work with landowner to allow for passive restoration of the channel by allowing natural vegetation to grow on the banks and not ditching.	Improved habitat; Improve adjacent wetland attenuation.
6	T1.07B/A + T1.06B #3	Nordic Farm: River Corridor is primarily undeveloped and forested. The riparian area is in good condition and protections should be put in place to ensure that this will not be lost to future land use changes.	Protect River Corridors - Preserve these "in- regime" reaches by preventing future encroachment. The property has an easement with the Vermont Land Trust already. Work with landowners to secure specific protections for the river corridor.	Improve floodplain attenuation; Reduce channel erosion.

Table ES-1: Project Identification Table Ten Priority Projects.

Priority Rank	River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Project Benefits
7	T1.04B #1	This reach is exhibiting incision and planform change. Erosion is occurring and the channel will continue to meander as it reaches equilibrium. It has reduced floodplain connectivity due to moderate incision. This would be an attenuation asset, located downstream of a reach that is out of its sediment regime.	Protect River Corridors - This reach flows through a primarily undeveloped forested riparian area. Protection of this corridor will allow the river to meander as necessary to reach equilibrium, continue to provide habitat and water quality functions, and prevent unnecessary flood and erosion risks.	Improved habitat; improved water quality.
8	T1.02B #1	This reach is very close to Lake Champlain and therefore management directly impacts the Bay and Lake. The majority of the river corridor and a large amount of the subwatersheds has been conserved, but specific land management should be investigated for compatibility with the river and lake.	Protect River Corridors - Work with landowners to manage inputs of runoff and sediment to river.	Improved water quality.
9	T1.08 #6	A small partially breached run-of-river dam is located upstream of a farm ford on the Nordic Farm property near the downstream end of the reach. The remaining stone structure impounds the river approximately 600 feet upstream. Impoundment is covered in thick algae that would smother natural species.	Remove Structure - Removal of remaining stone spillway and rubble would remove the impoundment and restore natural sediment and organism passage.	Restore channel to natural conditions; improve habitat.
10	T1.08 #1	This reach has a significant amount of agriculture in the corridor. The wetland has been straightened and natural vegetation has been lost post agriculture. The section near and upstream of Hinesburg Road has residential development encroaching on the wetland.	Protect Wetland Corridors - Work with landowners to protect identified wetland areas from additional development or active agriculture.	Improved habitat; improved water quality.

1.0 **PROJECT OVERVIEW**

McCabe's Brook is a tributary of the LaPlatte River which feeds into the Shelburne Bay. Shelburne Bay is a drinking water source for Chittenden County, so sediment and nutrient loading to the Bay is a concern. This study has collected Stream Geomorphic Assessment data for McCabe's Brook, adding to previous studies, and began river corridor planning.

Stream geomorphic assessments provide a basis for understanding existing conditions relative to natural river form and processes, and can guide planning efforts for conservation and restoration. The Vermont Agency of Natural Resources (VTANR), through its River Management Program (RMP) has developed a three-part Stream Geomorphic Assessment (VTANR, 2007). Phase 1 of *The Protocols*, a map-based watershed assessment, identifies expected stream type based on its valley. Phase 2 of *The Protocols* is a field exercise that identifies physical channel characteristics (e.g., width, depth, slope, meander pattern, particle size distribution) via observation and measurement, and verifies data collected during Phase 1. Phase 3 of *The Protocols* consists of a survey assessment where expanded observations and field survey are conducted to verify previous observations and create the detailed data set and site plan necessary for the evaluation of restoration alternatives.

This Phase 2 stream geomorphic assessment was completed in 2011 for the length of McCabe's Brook. The full Phase 2 was completed for the upper reaches (T1.08 - T1.05), while an update to the existing Phase 2 data with updated Reach Habitat Assessment (RHA) protocols was completed in the downstream reaches (T1.02-T1.04). The Phase 2 Geomorphic Assessment for the lower reaches of McCabe's Brook (T1.05B – T1.02) was completed by the LaPlatte Watershed Partnership (Godfrey, 2007). Since the 2007 assessment the RHA protocols have been updated.

The Lewis Creek Association contracted with Milone & MacBroom, Inc. to complete the Phase 2 Assessment and corridor planning of McCabe's Brook in 2011. VTANR has published a detailed guide for river corridor planning that was followed during this project (Kline, 2010). River corridor planning uses data collected during this Phase 2 assessment to develop projects and strategies to protect and restore natural river processes.

2.0 BACKGROUND WATERSHED INFORMATION

2.1 <u>Geographic Setting</u>

The assessment covers the McCabe's Brook from the influence of lake waters at the confluence with the LaPlatte River to the headwaters at the beginning of the defined channel (Figure 1). McCabe's Brook has a drainage area of 6.2 square miles including area in the Towns of Shelburne and Charlotte. The stream begins just south of Hinesburg Road in Charlotte and flows north through rural primarily agricultural lands to the border with Shelburne. It flows under Route 7 and passes the west edge of Shelburne Village before meeting the LaPlatte River near its confluence with Lake Champlain. McCabe's Brook was divided into 8 reaches during the Phase 1 Assessment and covers a total length of 8.3 miles. The watershed shape is long and narrow, with an average width of 1.2 miles wide near the mouth and 0.75 miles wide at the upstream end.

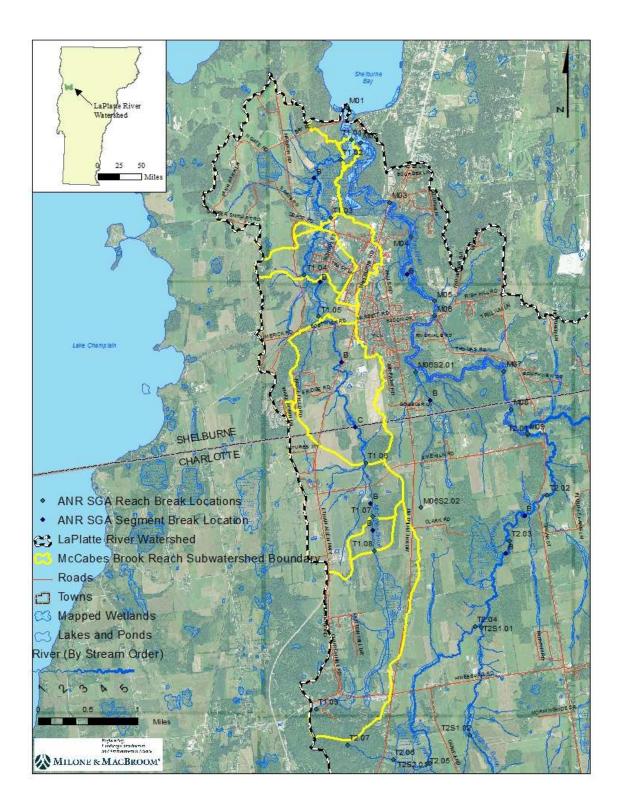


Figure 1: McCabe's Brook Location Map

2.2 <u>Geologic Setting</u>

McCabe's Brook is located within the geologic province of the Champlain Valley. This area was glaciated and as the glaciers retreated a large fresh water lake called Lake Vermont inundated the area. Lake Vermont receded approximately 10,000 years ago as the land rose.

Bedrock geology shows striations running north and south, parallel to the general river flow direction. The majority of the watershed is underlain with Monkton formation comprised of a quartzite with interbedded shale and dolostone. This rock structure is purplish and brown when weathered. The western strip of the watershed is underlain with the Stony Point formation, a mud brown weathering shale with interbedded limestone and dolostone. The Stony Point formation is typically west of the channel and main river corridor, except at T1.03 and T1.04, behind the School Street neighborhood in Shelburne where the main channel flows over this type of bedrock.

Mapped surficial geology shows most of the watershed to be glaciolacustrine deposits of silt, silt clay, and clay with boulders. These areas were lake bottom sediments from the Champlain Sea. Two small bands of till run on either side of the river corridor near reaches T1.06 and T1.07. The lower sections of the channel run through different deposits. The section of river approximately at reach T1.05A runs through a Champlain Sea Deposit of marine beach gravel. Then downstream near reaches T1.04 and T1.03 the river runs through a glaciolacustrine deposit of delta sand. Near the confluence with the LaPlatte River is a pluvial soil deposit made up of swamp, peat and muck. The watershed also includes smaller sections of bedrock exposure and till.

Soil types were determined from NRCS soil survey for Chittenden County, Vermont that includes Hydrologic Soil Group (HSG) classifications for all soils. The NRCS divides soils into four hydrologic soil groups: A, B, C, or D, depending on their infiltration capacity – the maximum rate water can enter the soil. Hydrologic soils are typically C and D within the watershed. Large wetland areas are typically found in areas with C and D soils. Soils are mainly clay soils, silt clay, and with some sections of stony loam.

2.3 <u>Fluvial Geomorphic Setting</u>

The geomorphic setting is influenced by slope, valley confinement, and riparian conditions. These factors were evaluated using remote sensing in the Phase 1 assessment and McCabe's Brook was divided into eight reaches with similar expected channel characteristics. Estimates of channel dimensions, reference stream type, and bedform were assigned based on the remote sensing data (Table 1, Figure 1). The reference stream type determined during the Phase 1 assessment is field verified and updated as necessary based on field conditions during the Phase 2 field assessment. The results of the Phase 2 assessment work is presented in following sections.

Reach ID	Reach Length (feet)	Drainage Area (square miles)	Valley Type	Channel Width (ft)	Channel Slope (%)	Sinuosity	Reference Stream Type	Channel Bedform
T1.01	1,265	6.16	Very Broad	29.2	0.00	1.02	С	Plane Bed
T1.02	4,204	6.06	Very Broad	28.9	0.06	1.48	E	Dune-Ripple
T1.03	3,040	4.6	Very Broad	25.6	0.29	1.57	E	Dune-Ripple
T1.04	3,099	4.18	Very Broad	24.6	0.78	1.08	С	Riffle-Pool
T1.05	9,278	3.54	Semi-Confined	22.9	1.16	1.34	С	Riffle-Pool
T1.06	2,901	2.51	Very Broad	19.6	0.64	1.41	С	Riffle-Pool
T1.07	1,793	1.59	Very Broad	16.1	0.84	1.07	С	Riffle-Pool
T1.08	11,017	1.47	Very Broad	15.5	0.54	1.02	С	Riffle-Pool

Table 1: Summary of McCabe's Brook Phase 1 information.

The slope influences channel morphology including channel shape and bed particle distribution. McCabe's Brook channel slope is low, averaging 0.7% over the length (Figure 2). The lower section, beginning between the railroad crossing and Harbor Road has an average slope of 0.15%. A steeper section with a slope of 2.5% exists approximately between the Railroad Crossing and Route 7, T1.05A. This section has significant exposed bedrock grade control across the channel. Upstream of the Route 7 crossing the slope is low with an average of 0.66%.

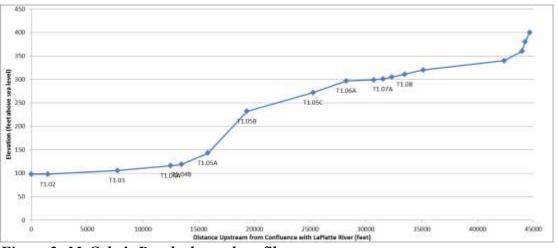


Figure 2: McCabe's Brook channel profile.

2.4 <u>Hydrologic Setting</u>

USGS does not operate a stream discharge gage on McCabe's Brook, but there is one on the mainstem of the LaPlatte River (USGS 04282795 LaPlatte River at Shelburne Falls, VT, Drainage Area = 44.6 square miles). Differences in drainage area and watershed characteristics make the mainstem gage a poor indicator of flows on McCabe's Brook.

USGS StreamStats web-application was used to determine approximate peak flows for McCabe's Brook at the confluence with the LaPlatte River. The application is based on

regression equations developed for Vermont (Olson, 2002). Peak flow estimates for the 2, 10, and 100 year recurrence intervals are 161, 285, and 447 cfs.

The LaPlatte Watershed Partnership coordinated a stream flow gaging project to determine discharge on McCabe's Brook (Clark et al., 2011). Gages were placed and continue to be used in the LaPlatte River watershed, including two on McCabe's Brook. The project is primarily to determine discharge when water quality samples are taken. Knowledge of flow data allows for conversion of nutrient concentration data to a load which is a function of flow. Staff gages were installed and rating curves were created to relate gage height to discharge (cubic feet per second, or cfs). Staff gages are present upstream of Vermont Teddy Bear Access Road (T1.05B) and downstream of Harbor Road behind Shelburne Rescue (T1.02). Work has not been done to characterize a typical hydrologic year or determine typical peak flow values using these gages.

2.5 <u>Ecological Setting</u>

McCabe's Brook is located in the Champlain Valley biophysical region that is generally known to be low, warm and dry relative to other areas of Vermont (Thompson and Sorenson, 2005). The lowlands are dominated by clay soils, with some more permeable alluvial sands and gravels along rivers.

The Champlain Valley was once dominated by clayplain forests communities. Today only remnants of these natural community types exist due to land cover conversion associated with timber harvest, agriculture, and development. Northern hardwood forest is the dominant forest type in upland areas.

The Champlain Valley supports large populations of snow and Canada geese during their spring and fall migrations. Lake Champlain, smaller lakes and ponds, and wetlands create important waterfowl habitat in the region. The Northern Hardwood forest in the valley supports a variety of wildlife and birds seen across Vermont.

The streams in the Champlain Valley tend to have a shallow slope and meander through fields and forest. Land cover conversion has lead to channel and floodplain alteration. The riparian corridors of streams, once dominated by wide expanses of forest and wet meadow, is now often narrow. This historic change in land cover and use impacts almost every component of the aquatic ecosystem including the amount of habitat present, the quality of the water, the stability of the stream channel, and ultimately the biological assemblage.

2.6 <u>Water Quality</u>

Water quality monitoring has been completed in the LaPlatte River and McCabe's Brook by the LaPlatte Watershed Partnership as part of its Volunteer Monitoring Program starting in 2004. Data have been compiled and analyzed up through the 2007 monitoring season (Hoadley, 2008). Past water quality reporting indicates that "Phosphorus concentrations in McCabe's Brook are significantly impacted by storm runoff from agricultural land and large impervious surfaces, as well as by stormwater runoff from urban/semi-urban areas in downstream stations (Hoadley, 2008)." These trends generally apply to suspended sediment and nitrogen concentrations. There

were increases in total Nitrogen, suspended solids, and Phosphorus between Bostwick Road and Harbor Road. Large increases in Phosphorus at the Teddy Bear access road were attributed to runoff from parking areas and buildings. These water quality results indicate that the identified stormwater outfalls at both the Teddy Bear Company and neighborhood upstream of Harbor Road in Shelburne Village should be targeted for stormwater mitigation.

Physical habitat types and condition is evaluated as part of the Phase 2 assessment as part of this project. Results are discussed for specific reaches in following sections.

3.0 <u>METHODOLOGY</u>

The assessment followed protocols developed by the Vermont Agency of Natural Resources (VTANR, 2007). Protocols were downloaded from the RMP website, and guidance for the new Rapid Habitat Assessment (RHA) (Schiff et al., 2008) was previously obtained during method development by MMI and RMP.

3.1 Field Assessment Methods

All project reaches were assessed on foot following the VTANR protocols. Segment breaks were identified during a stream walk based on cross section measurements and other reach data. A sketch of the stream was made during the stream walk. Current geomorphic condition was documented along with dominant channel processes at a representative cross section (i.e. aggradation, degradation, widening, planform change).

The habitat assessment followed the 2008 protocols. Large woody debris, pools, undercut banks, and identification of refuge areas were counted and measured during the stream walk and logged on a tally sheet. Field forms were completed at the representative cross section to quantify key habitat features on condition.

Bridge and Culvert assessments were completed for each structure in the project area using the protocols in Appendix G of the Stream Geomorphic Assessment. Structure width, clearance height, length and general characteristics describing the interaction of the channel and structure were recorded.

For downstream reaches, the existing Phase 2 data was reviewed, the channel was assessed on foot, and the RHA and Bridge and Culvert assessments were completed.

Assessments were completed between July 13, 2011 and August 9, 2011. Key physical and habitat features were sketched and approximately located using a hand-held GPS unit (*Garmin GPS 76*). Features were documented with a digital camera.

Features were indexed with reference to the Vermont Hydrography Dataset (VHD) using the Feature Indexing Tool in the SGAT (Version 4.59) GIS extension. Reach segmentation was recorded, where necessary, using the Segmentation Tool. Data was submitted online using the Data Management System (DMS).

3.2 **Quality Assurance Methods**

All data were thoroughly examined in-house by MMI. Geomorphic stream type and channel evolution stage were compared to various classification systems (e.g., Montgomery and Buffington, 1993; Rosgen and Silvey, 1996; Rosgen et al., 2006) to verify decision-making in the field. The data were submitted to RMP for QA review on December 15, 2011 and QA was completed February 2, 2012.

4.0 **GEOMORPHIC ASSESSMENT RESULTS**

Results of the stream geomorphic assessment for McCabe's Brook reaches T1.02 - T1.08 are presented here. Reaches and segments are presented from upstream to downstream. Reference to right bank and left bank assume facing downstream. Reach mapping can be found in Appendix A and data summary reports for each reach in Appendices B.

4.1 **T1.08**

This reach marks the upstream limits of McCabe's Brook, with the upper part of the reach dominated by wetland. The reach was not able to be fully assessed due to the wetland characteristics and impounded water at the downstream section. The segment was walked, sketched, photo-documented, and GPS points were taken to facilitate feature indexing. Notes were taken to guide corridor planning.

The Phase 1 reported the reference condition to be a Rosgen C5 riffle-pool channel. The upper section of the reach was dominated by wetlands and therefore does not fit within the alluvial classification system. At the stream location where flow consolidated enough to warrant assessment, the reach assessment did not apply due to ponding and alteration by both straightening and dredging. The actual reference condition was difficult to determine, but may have been an Rosgen E5 dune-ripple channel. Two cross-sections were measured in the altered area, but do not represent a reference condition.

Corridor management varies along this reach. Although the reach primarily flows through agricultural lands, there was no current animal access to the channel. Cattail dominated wetland exists between Homesteader Road and Hinesburg Road. The brook may be historically ditched downstream of Hinesburg Road for a few hundred feet through a farm with minimal buffer to the hayfields. It then flows through a cattail wetland before entering a farm pond. Downstream of the farm pond it flows through a 400 foot wide, fenced wetland field. No recent animal access, but it is unclear what the management of the field is. It then flows through a narrower field with an approximately 100 foot herbaceous buffer from a mowed field. The channel is undefined, but appears straight as though historically ditched in these areas. Approximately adjacent to Mutton Hill Lane, the channel enters a wooded area where it is paralleled by a farm road at the top of the bank and appears to have been recently ditched. It then parallels a small mowed field with a 5 foot left buffer where it also appears to have been dredged.

The most downstream 900 feet of channel is similar to T1.07B with a narrower valley than the upper part of the reach. This area, downstream of the left bank hayfield, has significant ponding, thick algae growth and stagnant water. The remains of an old dam is impounding water in this section and capturing fine sediments. The dam is broken, but the remaining pile of cobbles is approximately 1 foot above the downstream water surface. If the effect of the dam was absent, this 900 feet would probably have the same channel characteristics as T1.07B.

Photo 1: T1.08 has an inline farm pond formed by a farm road and culvert on the downstream end and b) a wide ponded section with minimal buffer.

There are many crossings in this reach. A driveway at Homesteader Road dams the channel, creating a pond. The channel then passes under Hinesburg Road in a culvert. These culverts consolidate the otherwise wetland flow into a concentrated path. There are four farm crossings with culverts. Most of the pools observed in the reach were caused by the scour at the downstream end of the crossings. A tractor ford crosses near the downstream reach break.

4.2 <u>T1.07</u>

T1.07 has a more confined valley than the upstream channel. Channel dimensions and riparian vegetation type vary across the reach and caused segmentation.

Segment B

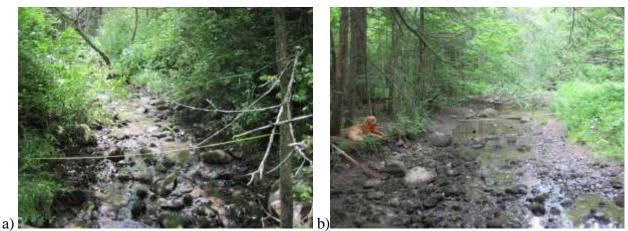
This segment begins just downstream of the old dam and farm ford behind the Nordic Farm. The channel flows through a herbaceous wetland area. At the downstream segment break, the brook flows into a forested area. At the treeline are the remains of an old earthen embankment dam. This dam is a floodplain constriction, although not constricting the channel. It is possible that the differences between the downstream wooded segment and this segment are due to historic effects of the dam. It is unknown if this area was originally similar to segment A. The water in this segment was noticeably turbid.

The channel is a Rosgen E-type channel with riffle-pool bedform in good condition. This segment is a subreach with a different reference type than the downstream C type channel. The channel bed is primarily gravel. The sand and clay banks are contributing fine sediments to the

channel and adding turbidity to the water column. It is in channel evolution stage I and has high sensitivity.

T1.07B has fair habitat (RHA score = 63%). Trees are lacking on the banks, in the buffer, and in form of Large Woody Debris (LWD). There is evidence of sediment mobility and high fining degrading the bed substrate cover. Bed features are poorly formed and the reach has a low number of pools and riffles. The nearbank vegetation is herbaceous, but does include invasive honeysuckle shrubs. The valleywalls are wooded. There is approximately a 100 foot wetland and wooded buffer on either side of the channel before hayfields.

Photo 2: a) T1.07B flows through a herbaceous wetland area and is b) bordered by forest.


Segment A

T1.07A is a short section downstream of the remains of the dam in T1.07B. This section travels through a mature deciduous forest. Channel dimensions are wider than the upstream segment. The buffer along this segment is almost 1,000 feet.

The channel is a Rosgen C-type channel with riffle-pool bedform in good condition. It is in channel evolution stage II of the F-model and has high sensitivity. There is some incision (IR=1.3) that may be due to the breach of the upstream dam. The channel bed is gravel and cobble. There is some minor incision occurring, but the channel has not departed from its reference condition and has clear access to the forested floodplains.

T1.07A has good habitat (RHA score = 78%). The wide forested buffer is in good condition and providing shading, cover, and woody debris to the channel. There is minor fining occurring on the bed. The riffle pool pattern has fewer pools than reference and lacks fast-deep habitat. There is exposed substrate in the channel that may be due to recent lack of rain.

Photo 3: T1.07A typical channel sections looking a) upstream and b) downstream.

4.3 <u>T1.06</u>

T1.06 was segmented due to differences in channel dimension, bed substrate, and riparian conditions. The upper segment is in a densely wooded area with a wider channel (BFW = 19.5 feet) and larger substrate. The lower segment transitions to a narrower channel (BFW=6.5 feet) with smaller substrate flowing through a wet meadow.

Segment B

T1.06 B flows through a wide, dense mixed forest. This is a short segment, limited to the forested area at the upper end of the reach. The channel has good connection to the adjacent floodplains, although minor incision has reduced its historic access (IR = 1.3). This segment is remote and does not have any encroachments or crossings.

The channel is a Rosgen C-type with a riffle-pool bedform and a gravel bed. The channel is in good condition in channel evolution stage II of the F-model with high sensitivity. There are minor signs of aggradation, widening and change in planform due to exposed substrate and bar formation. There is a large amount of substrate exposed that could be due to the recent dry weather.

T1.06B has good habitat (RHA score = 75). The wide forested riparian area provides LWD to the channel and excellent riparian and bank conditions. Fining and minor embeddedness is occurring, but may be natural due to sand and clay banks.

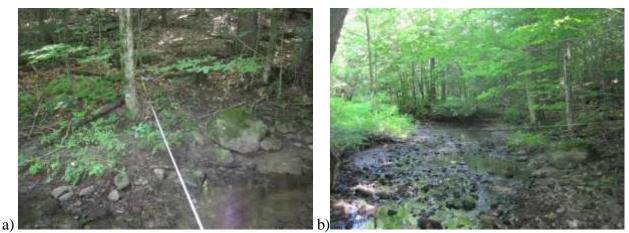


Photo 4: T106B typical a) bank and b) channel sections.

Segment A

The segment break is where the canopy opens and riparian vegetation begins to have wetland characteristics. This segment is a subreach, exhibiting its reference conditions, which are different than segment B reference conditions. The channel flows through a natural wet meadow, with some sections of wetland. The left buffer here is reduced to as little as 50 feet at a horse farm upstream of Lime Kiln Road and to 100 feet at agricultural fields downstream. There are many breached historic beaver dams, but no actively maintained dams. These have caused some small planform changes and accumulation of fine sediments.

T1.06A is a Rosgen E-type channel with a dune-ripple bedform and primarily sand bed mixed with gravel. Its bankfull width at this location is 6.5 feet with a mean depth of 1.6 feet. It is in reference condition with minor planform change due to influence of beaver dams. It is in channel evolution stage I and has high sensitivity. There is good hydraulic connection to the wet meadow floodplains and many connected wetlands.

This reach has good habitat (RHA score = 70%). Although the reach has good buffers and natural vegetation, the wetland nature of the vegetation reduces canopy and woody debris cover and potential. The presence of beaver dams has increased fine material on the bed and sunny condition had allowed for algae mat growth.

The Lime Kiln Road culvert was failed during the July 15, 2011 site visit. The culvert constricts the channel and floodplain. Sometime after the initial visit the culvert was replaced with a similar 4 foot diameter round culvert. The bank and road was reconstructed and hard armoring was added. The replacement with the same size culvert did not provide additional conveyance.

Photo 5: T1.06A a) typical section and b) failed Lime Kiln Road culvert viewed from upstream end.

4.4 <u>T1.05</u>

This reach was partially assessed in 2007 at which point it was segmented into three sections. At that time property access was not granted upstream of the Shelburne border and has since been allowed.

Segment C

This segment flows through a broad valley in a remote area upstream of the Teddy Bear Factory and downstream of Lime Kiln Road. The immediate riparian vegetation is wetland and wet meadow vegetation with very few trees, although the riparian vegetation a bit farther from the channel is wooded. The riparian buffer is in most locations very wide, with a minimum of 100 feet adjacent to hayfields at the lower end of the reach. There are many locations with thick cattail growth within the channel. Invasive species of purple loostrife and buckthorn exist along the channel.

There are multiple existing or damaged partial beaver dams in the segment that influence short sections of the channel both by impounding sediments and causing floodchutes. The downstream segment break is within the impoundment of a large downstream beaver dam and located at the Charlotte-Shelburne town boundary. Some sections of the reach have exposed substrate where the channel does not have above ground flow and water is probably flowing through the gravel on the bed.

The reach is a Rosgen E-type channel with dune-ripple bedform and a gravel bed. The channel is in reference geomorphic condition and in channel evolution stage I. There is some increase in fine sediments and creation of floodchutes caused by beaver dam influence. The banks are comprised of a non-cohesive sand layer under a cohesive clay layer. The banks are visibly contributing turbidity to the water column anywhere the water is moving along the clay portion of the bank.

T1.05C has good habitat (RHA score = 68%). There is good bank and riparian vegetation, although the near bank vegetation does not have many trees. This has led to reduced LWD in the channel. There is moderate fining on the bed substrate, typically near the beaver dams. There is little active bank erosion.

Photo 6: T1.05C a) typical section and b) dry section near downstream segment break.

Segment B

This reach begins in a large beaver impoundment at the Charlotte-Shelburne town boundary. At the upstream end there is a 200 foot buffer to agricultural fields on both sides of the river. In this area there are a few beaver dams impounding short sections. The riparian buffer steadily decreases in width moving downstream. An agricultural field to the left has a minimum of 50 foot herbaceous buffer along parts of the field. There is what appears to be an old animal watering hole that has now been fenced away from the field, but has not returned to river form and vegetation is not natural. Sections of the channel are completely filled with vegetation either grasses (many locations along the segment) or mint (downstream of Teddy Bear Access Road).

A staff gage is located in this reach upstream of the Teddy Bear Factory Access Road. This gage is maintained by the LaPlatte Watershed Partnership, as discussed in Section 2.4.

The culvert at the Teddy Bear Factory is large and in good physical condition, but has reduced aquatic organism passage. A long apron with very shallow flows existing upstream creates a fish block. Also, the drop at the downstream outlet also is a fish passage issue. The valley significantly narrows at this culvert and continues to be narrow downstream. The Route 7 culvert is an undersized concrete box culvert that completely fills the floodplain with its tall embankment. Between the Teddy Bear Culvert and Route 7 culvert are two mass failures contributing a large amount of sediment to the river. Downstream of the Route 7 culvert the channel makes a large S-turn back towards the Route 7 embankment. It flows straight towards the embankment and is forced to make a sharp turn and flow against the embankment in a severely constricted straight channel for a few hundred feet. multiple large mass failures also exist. Looking at the topography of this section indicates that the embankment (and terrace on left) is severely constricting the flow (Figure 3). In addition to the mass failures upstream of the culvert there are several more extremely active failures downstream of Route 7, including in Segment T1.05A. The segment ends at this constriction.

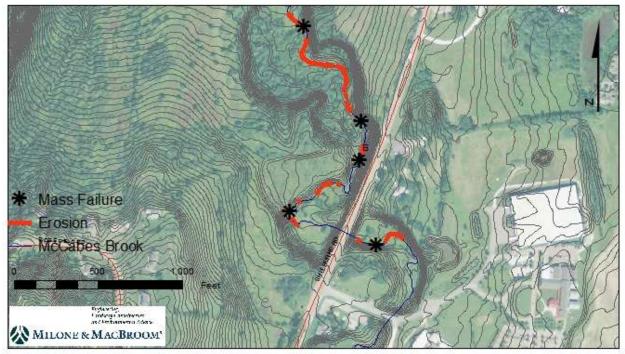


Figure 3: T1.05A and T1.05B have multiple mass failures and significant bank erosion in the vicinity of the Route 7 crossing, possibly caused by constriction of the floodplain. Two foot contour lines show locations of steep slopes and the edge of the river corridor.

Photo 7: Culverts on T1.05B include a) Teddy Bear Factory Access Road (looking upstream) and b) Route 7 (looking downstream).

Photo 8: T1.05B a) large mass failure near downstream end a) looking downstream and b) looking upstream.

The 2007 assessment was confirmed in the field, and showed that this segment is in good geomorphic condition. The channel is a Rosgen C-type channel with dune-ripple bedform and a primarily sand bed. The channel has good connection to its floodplains. It is in channel evolution stage IIc of the D evolution model and has high sensitivity.

T1.05B has fair habitat (RHA score = 61%). The riparian buffers were narrow with a lack of both trees and shrubs in the buffer and near the river. The lack of trees decreased the bank canopy, and reduced the amount of LWD present in the channel. There was significant fining on the bed possibly produced locally from the clay banks. Both culverts have reduced aquatic organism passage. The banks had few undercuts and although for most of the segment didn't have significant bank erosion, had multiple large mass failures at the lower end.

Segment A

This segment begins just downstream of the Route 7 embankment constriction. At the downstream end of the constriction a large bedrock grade control exists, bordered by a mass failure. There are additional bedrock grade controls and mass failures in this reach. The mass failures in this reach and upstream in T1.05B are till, and contribute a significant amount of mixed sediment to the river. This segment is heavily sedimented with primarily gravels. The majority of the bed substrate is exposed with large gravel bars filling bed features. There are sections of dry bed. Some of the visible gravel may be due to the underlying surficial geology, a band of Champlain Sea Deposit of marine beach gravel that is unlike the upstream and downstream clay and sand.

Photo 9: a) A large mass failure with bedrock bed near upstream segment break and b) typical sedimented channel section.

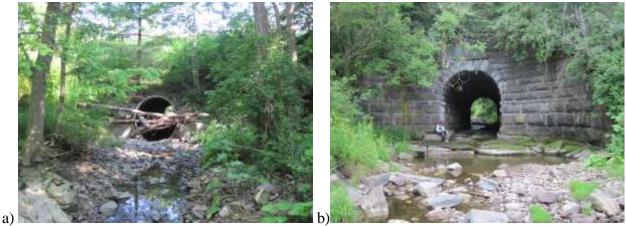


Photo 10: a) Bostwick Road culvert constricts the channel, accumulating debris and sediment upstream (shown looking downstream) and b) the railroad culvert reduces aquatic organism passage with a drop at the downstream end and flow under the culvert floor (shown looking upstream).

PAGE 16

The Bostwick Road culvert severely constricts the channel and floodplain with its tall embankment. A massive sediment delta has formed upstream because it is not adequately conveying sediment or water. The culvert has scoured downstream and has a drop at the outlet that would block many aquatic organisms. The railroad crosses with a masonry arch with a concrete bottom. The bottom has separated so flow seeps under the floor, creating a dry bottom at low flows. A drop off the downstream apron would also inhibit organism passage.

The segment has poor geomorphic condition. The reference Rosgen C-type channel has departed to an F-type channel. The channel is in channel evolution stage III of the F model. The stream sensitivity is extreme. Incision has decreased connection to floodplains. The channel is currently widening and changing planform.

T1.05A has fair habitat (RHA score = 48%). There is little LWD in the channel due to lack of trees upstream and limited trees along the banks in this segment. There is some fining occurring, but most of the sediment deposition is gravel. The bedform pattern is dominted by deposition features and plane-bed runs and pools that do exist are small. The majority of the substrate is exposed.

4.5 <u>T1.04</u>

This reach was assessed in 2007 and at that time was segmented because the lower section was impounded by beaver dams. This section is no longer impounded, so a full Phase 2 assessment was completed for T1.04A.

Segment B

This reach starts just west of Shelburne Museum, downstream of the railroad culvert. There is an adequate riparian buffer along this segment approximately 300 feet wide. There are meadows adjacent to the stream that may have been abandoned hay fields, but do not appear to be used. In the areas that may have been fields the vegetation is herbaceous with a distinct lack of trees near the bank. There are wooded sections along the stream, as well as a wooded buffer farther from the river edge. Invasive honeysuckle is found along the river. The channel is a losing stream, with a long section with no visible water. Water is hypothesized to be flowing under the large amount of deposited gravel and within the underlying Champlain Sea Deposit.

The segment is a Rosgen C-type channel with riffle-pool bedform and a primarily gravel substrate. The channel is in fair geomorphic condition. The channel evolution stage is II in the F model with very high sensitivity. There is some incision and significant aggradation. Sediment is probably coming from the large mass failures upstream.

T1.04B has fair habitat (RHA score = 55%). The reduced number of trees on the banks and in nearby riparian area have also decreased the amount of LWD in the channel. There is some fining occurring and a significant amount of algae growth. Pools are generally small, with little cover. A majority of the substrate is dry and the lack of flow would block aquatic organism passage at low flows.

A grass footpath crosses the channel in the middle of the reach over a bridge. The bridge has significant scour along the footings. The flow is not aligned well with the river and is scouring behind one of the abutments.

Photo 11: a) A dry section along T1.04B downstream of the railroad bridge and b) a typical section.

Segment A

This short segment was segmented in 2007 due to beaver dam impoundment and was not assessed at that time. The beaver dams were not present during the field visit for this project and the Phase 2 assessment was completed. The segment begins as the channel exits the treeline into a riparian area with an open canopy and wet meadow vegetation. The reach ends just upstream of the School Street neighborhood.

This segment is a Rosgen E-type channel with ripple-dune bedform. The bed substrate is primarily sand and significantly smaller here than upstream gravel dominated segment of the reach. The segment is in good geomorphic condition and is in channel evolution stage II of the F model. There is incision occurring, possibly due to the recent breach of beaver dam. The stream sensitivity is high.

T1.04A habitat is in fair condition (RHA score = 61%). The lack of trees along the bank and in upstream reaches has reduces LWD in the channel. There are a lot of vegetated bars along the channel edges. There is some fining occurring.

A small footbridge crosses the channel in this reach and does not appear to have significant conflict with river processes.

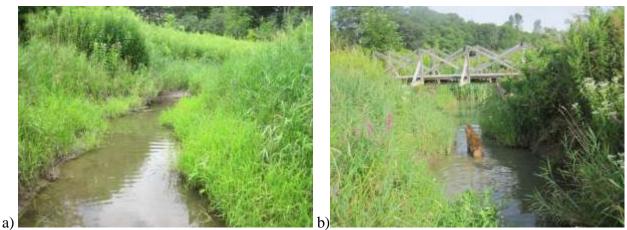
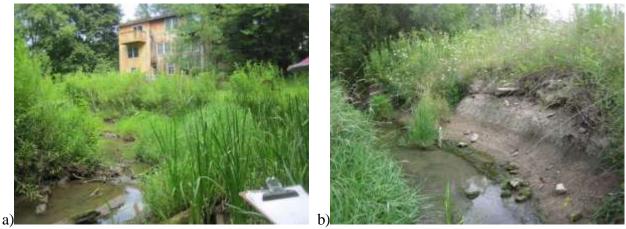


Photo 12: a) T1.04A typical section and b) small footbridge.

4.6 <u>T1.03</u>


T1.03 begins adjacent to the School Street neighborhood, just south of Heritage Lane and extends downstream past Harbor Road to just below the Shelburne Public Works buildings on Turtle Lane. This reach feels fairly wild while walking in it, despite the proximity to the village center. The channel flows through a wetland, into a floodplain forest, and through a wet meadow with reduced tree cover. Many invasive species exist on the banks including honeysuckle, buckthorn, briar, and purple loostrife. Remains of old beaver dams are disrupting natural sediment transport and holding some pockets of fine sediment.

The RGA data collected in 2007 was confirmed in the field to be a Rosgen E-type channel with dune-ripple bed features with a primarily sand bed. The channel is in fair condition and is in stage II of the D channel evolution model. Slight incision has occurred, but there is still good access to the floodplain. This reach has extreme sensitivity due to the sand bed and fair condition.

T1.03 has good habitat (RHA score = 66%). Although in most locations an adequate forested buffer exists, riparian area condition was influenced by proximity to residential development. LWD and tree cover are lacking in the fields upstream of Harbor Road. Algae mats are present in the channel immediately downstream of the sewer treatment plant outfall.

Encroachments exist at a few residential properties in the School Street neighborhood. Most homes sit up on the valley wall, and only one home off of Davis Lane has removed the riparian buffer. The Shelburne Public Works building at the sewer treatment plant has encroached on the channel with some visible fill, no vegetated buffer, and storage of materials adjacent to the channel. Erosion is occurring at this location. Harbor Road crosses McCabe's Brook in this reach. The culvert was recently replaced with a structure that is as wide as bankfull width and is embedded and backwatered. It does not have significant conflict with either channel processes or AOP.

Photo 13: T1.03 has a) encroachments from a home on Davis Lane and b) possible historic filling at the top of the bank behind the Shelburne Public Works building.

4.7 <u>T1.02</u>

This reach begins downstream of the Shelburne Public Works facilities and extends to the backwater from Lake Champlain. It mainly runs through land conserved by The Nature Conservancy on the right and at the edge of an active farm on the left. The farm does maintain buffers from the mainstem, through which run the Shelburne recreation trail and a utility corridor. Tributary channels to McCabe's Brook run through active areas on the farm and runoff is a concern. The farm has new ownership and has expressed interest in working with the LWP and LCA to improve farm/stream interaction.

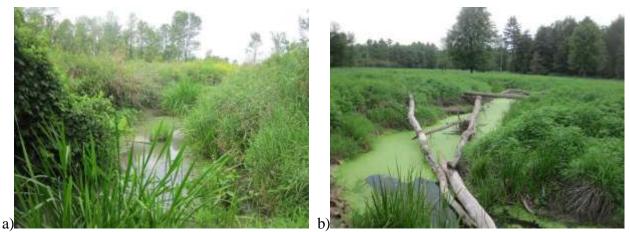


Photo 14: T1.02 typical channel sections a) upstream and b) near downstream end.

Phase 2 data collected in 2007 was confirmed to be a Rosgen E-type channel with dune-ripple bed features. Bed material was previously reported as sand and observations indicate that the material is predominately a mix of silt and clay with occasional bars or ripples of sand or fine gravel. Channel banks are comprised of a cohesive clay and hardpan clay spans the channel bed in many locations. Because of the low gradient nature of the channel, many locations have

accumulated fine sediments on the channel bed. This segment is in good geomorphic condition and is in Stage III of the D channel evolution model.

There is good connection to the many adjacent wetlands and wet meadows. Old hayfields border the channel in many locations, with limited riparian trees. Lack of tree cover adjacent to the channel has not limited in-channel large woody debris. Many invasive shrubs are present on the banks including honeysuckle and buckthorn. The channel has significant vegetation growth including cattails, an invasive flowering rush, emergent wetland vegetation, and duckweed.

T1.02 has good habitat (RHA score = 78%). The habitat is not in reference condition because of presence of invasive species, lack of trees in the riparian and bank areas, periodic bank erosion and fine sediment accumulation.

The downstream section was segmented doe to inundation from Lake Champlain. Management and landowners are the same. Moving downstream the inundation increased, water became stagnant, duckweed increased, and Eurasian milfoil was present.

5.0 <u>SUMMARY OF ASSESSMENT RESULTS</u>

5.1 <u>Geomorphic Results Summary</u>

The RGA was not completed for two segments; T1.02A because it was impounded by Lake Champlain and T1.08 because of its wetland and impounded condition. Reference condition of the segments was verified or adjusted to be either C or E type channels with Dune-Ripple or Riffle-Pool morphology (Table 2).

Upstream of the assessment in T1.08 the channel exhibits a wetland reference condition. It has had significant impacts including straightening and travels through land historically used for agriculture. Although this section was not assessed using the RGA protocol, it appears that it has departed from its reference condition.

The upper reaches, between T1.07 and T1.05C, were found to be in good or reference geomorphic condition. These reaches are in stage I of the F evolution model, which means that the reaches are stable without significant transformational processes occurring. Although not departed from their reference stream types, they have a high sensitivity to change due to their channel type. T1.06B and T1.07 A has some incision and is in Stage II of the F evolution model, possibly due to a breach of a dam located at the upstream end of the reach.

Segments from T1.05B and downstream were assessed in 2007 by others and findings were verified during the field investigations of this project. These segments are in various stages of incision, widening, and planform change. T1.05A has departed from a reference C-type channel to an F-type and was found to be in poor condition.

Table 2: Summary of Geomorphic Results

Reach ID	Length (feet)	Bankfull Width	Width to Depth Ratio	Entrenchment Ratio	Incision Ratio	Reference Stream Type	Existing Stream Type	Sub- reach	RGA Score	Process	Stream Condition	Channel Evolution Stage	Sensitivity
T1.02 A	2688	-	-	-	-	Impounded	Not Assessed		0.00	-	-	-	-
T1.02 B	3546	18	6.2	12.8	1.0	E5 D-R	E5 D-R		0.70	Planform, Aggradation,	Good	DIII	High
T1.03	4766	15.2	5.2	55.9	1.1	E5 D-R	E5 D-R		0.64	Planform, Aggradation,	Fair	D IIc	Extreme
T1.04 A	979	13.5	9.6	14.1	1.4	E5 D-R	E5 D-R	Yes	0.66	Incision	Good	FII	High
T1.04 B	2364	18.4	18.4	2.7	1.3	C4 R-P	C4 R-P		0.49	Planform, Incision	Fair	FΠ	Very High
T1.05 A	3508	22.7	28.0	1.3	1.9	C4 R-P	F4 R-P		0.44	Widening and Planform	Poor	F III	Extreme
T1.05 B	5939	37.1	33.7	6.0	1.0	C5 D-R	C5 D-R	Yes	0.82	Planform and Widening	Good	D IIc	High
T1.05 C	2977	18.9	11.1	7.2	1.0	E4 D-R	E4 D-R	Yes	0.85	none	Reference	Ι	High
T1.06 A	2450	6.5	4.1	100.3	1.0	C4 R-P	E5 D-R	Yes	0.79	Planform	Reference	Ι	High
T1.06 B	830	19.5	15.0	7.4	1.3	C4 R-P	C4 R-P		0.71	Widening and Planform	Good	FΠ	High
T1.07 A	777	9	16.4	8.6	1.3	C4 R-P	C4 R-P		0.75	Degradation	Good	FII	High
T1.07 B	1136	5.5	6.9	7.0	1.0	E4 R-P	E4 R-P	Yes	0.84	none	Good	Ι	High
T1.08	11204	-	-	-	-	Wetland	Not Assessed		0.00	-	-	-	-

5.2 <u>Habitat Results Summary</u>

Assessed stream segments were identified to have good to fair overall physical habitat conditions, with no stream segment having exceptionally poor or reference habitat (Table 3).

Large woody debris condition is highly variable, with better condition at the upper and lower portions of the stream. T1.07A and T1.06B travel through a mature forested floodplain and have excellent woody debris condition. Some of the middle reaches flow through what appear to be recovering agricultural fields that are not yet producing woody debris. Other middle reaches are bordered by wet meadows that may naturally be limited in woody debris production and retention. T1.02B has accumulated large amounts of woody debris despite few trees growing adjacent to the channel.

River bank and riparian area condition is related to woody debris cover and also variable. Condition is excellent in forested upper reaches. T1.03 has residential and other development within the riparian area and limited tree cover. T1.04B has degraded bank habitat and significant erosion due to planform adjustment and limited tree cover in buffers. T1.05A also has significant bank erosion including multiple mass failures and reduced trees in the buffers due to development. T1.05B has active agricultural activity and poor tree cover in the riparian area, although does have an herbaceous buffer to agriculture.

Bed substrate cover was generally in good condition. Many reaches have evidence of sediment mobility and increased fining. Many of the reaches have a reference Dune-Ripple bedform where fine sediments are typically found on the bed. Deposition of fine materials is difficult to determine in these Dune-Ripple segments. T1.07B had significant fining and sediment mobility over the gravel bottom. The upstream wetland reaches and agricultural disturbance in the watersheds may contribute additional fine sediments. Dense algae growth was seen in T1.06A and T1.04B where limited tree cover increases sunlight exposure, T1.03 near the Sewage Treatment Plant outfall, and T1.02B where the water slows in proximity to the impoundment downstream.

Scour and deposition features were generally in good condition. Dune-Ripple and Riffle-Pool features had a distinct pattern in most reaches with a sufficient distribution, density, and size of bed features. Some limited overhanging vegetation and pool coverage was seen in reaches with reduced riparian vegetation. T1.05A has small pools and limited overhanging vegetation, caused by widening and planform changes. Possibly due to the historic impoundment, T1.07B had small pools, low riffle coverage, and poorly defined riffle-pool pattern. Pool sizes ranks were low in many segments due to shallow depths caused by overall small stream size.

Hydrologic characteristics were in reference or good condition in many segments. There was significant exposed substrate and reduced wetted width in T1.04A and T1.05A due to widening and planform changes. T1.05A and T1.06B also had minimal adjacent springs and wetlands.

Connectivity was generally good, with few obstructions. T1.04B had significant sections of dry riverbed which would block aquatic organism passage. T1.05A had two culverts that would

block organism passage. Low flow refuge areas were generally not abundant throughout the system, especially in T1.06A.

Segment ID	Woody Debris Cover	Bed Substrate Cover	Scour and Deposition Features	Channel Morphology	Hydrologic Characteristics	Connectivity	River Banks, Left	River Banks, Right	Riparian Area, Left	Riparian Area, Right	Total Score (out of 160)	Total Score (Percent)	Overall Physical Habitat Condition	Geomorphic Stream Condition
T1.02 A	-	-	-	-	-	-	-	-	-	-	0	0	N/A	N/A
T1.02 B	19	13	13	17	16	18	6	6	9	7	124	78	Good	Good
T1.03	14	13	14	16	13	14	6	6	5	5	106	66	Good	Fair
T1.04 A	3	13	13	10	16	13	6	6	9	9	98	61	Fair	Good
T1.04 B	8	14	12	13	9	8	4	4	8	8	88	55	Fair	Fair
T1.05 A	8	13	9	7	8	11	3	3	7	7	76	48	Fair	Poor
T1.05 B	6	11	11	13	16	12	9	9	5	5	97	61	Fair	Good
T1.05 C	3	11	11	18	18	15	7	7	9	9	108	68	Good	Reference
T1.06 A	5	10	13	18	20	18	7	7	7	7	112	70	Good	Reference
T1.06 B	17	11	11	17	10	16	9	9	10	10	120	75	Good	Good
T1.07 A	18	13	13	14	13	16	9	9	10	10	125	78	Good	Good
T1.07 B	7	7	8	19	13	17	8	8	7	7	101	63	Fair	Good
T1.08	-	-	-	-	-	-	-	-	-	-	0	0	N/A	N/A

Table 3: Summary of Reach Habitat Assessment Results

5.3 Bridge and Culvert Assessments

Bridge and culvert assessment results show that many of the stream crossing locations would disrupt either fish passage and/or sediment transport (Table 4, Appendix C). McCabe's Brook has long stretches of stream channel that are uninterrupted by crossing structures.

Downstream structures at Bay Road and Harbor Road are not causing problems with AOP or obvious disruption in sediment transport. The bridge at the grass trail in T1.04B is poorly aligned and scouring behind the upstream abutment and at the footers.

In T1.05A both the Railroad and Bostwick Road are undersized with a freefall and cascade type outlet that is expected to disrupt aquatic organism passage. Bostwick Road is significantly undersized and has accumulated a significant sediment delta upstream. These culverts are located at a break in valley slope which is critical for sediment transport.

The Route 7 culvert is extremely undersized and has completely blocked the floodplain, its embankment constricting the channel downstream.

Lime Kiln Road structure has recently failed and during the assessment was in extreme need of replacement. The upstream end of the structure has tipped down into the stream channel,

allowing a fraction of flow to enter. This structure was replaced with a new structure of the same size, instead of one that is at least as wide as bankful width.

Upstream structures are mostly compatible with stream processes although small compared to stream size. During flooding water can flow around the structures and therefore has not caused significant scour and erosion. Their short length and backwatered condition positively influence aquatic organism passage.

Reach	Road Name	Structure Type	Structure Length	Structure Height	Structure Span	Stream Width	% Span / Stream Width	FloodPlain Filled	Approach Angle	CulvertInvertFlowType
M01	Bay Road	Bridge	30	6.4	83	78	106.4	Entirely	Naturally Straight	
T1.03	Harbor Road	Culvert	43	5.6	15	15.2	98.7	Partially	Mild Bend	Entirely Backwatered
T1.04	Grass Trail	Bridge	14	6.5	17	18.4	92.4	Entirely	Mild Bend	
T1.05	Railroad	Culvert	87	12.4	11.9	22.7	52.4	Entirely	Naturally Straight	Free Fall
T1.05	Bostwick Road	Culvert	154	8.3	7.3	22.7	32.2	Entirely	Mild Bend	Cascade
T1.05	Shelburne Road	Culvert	113	10	9.75	37.1	26.3	Entirely	Naturally Straight	Entirely Backwatered
T1.05	dy Bear Factory Ac	Culvert	128	9	13	37.1	35.0	Entirely	Naturally Straight	Free Fall
T1.06	Lime Kiln Road	Culvert	40	4	4	7	57.1	Entirely	Naturally Straight	Entirely Backwatered
T1.08	Farm Road	Culvert	19.75	2	2	15.5	12.9	Partially	Naturally Straight	Entirely Backwatered
T1.08	Farm Road	Culvert	17	2	2	15.5	12.9	Partially	Naturally Straight	Entirely Backwatered
T1.08	Farm Road	Culvert	12.5	2	2	5	40.0	Partially	Channelized Straight	Partially Backwatered
T1.08	Farm Road	Culvert	24	2.5	2.5	5	50.0	Partially	Sharp Bend	Partially Backwatered
T1.08	Hinesburg Road	Culvert	47	2	2	5	40.0	Entirely	Naturally Straight	Entirely Backwatered

Table 4: Bridge and Culvert Assessment Summary

6.0 DEPARTURE ANALYSIS AND STRESSOR IDENTIFICATION

6.1 <u>Hydrologic Regime Stressors</u>

The hydrologic regime describes the flow events in the river including the timing, volume, and length of time. If a watersheds hydrology is changed, rivers can respond by adjusting their geomorphology to match the new flow patterns. Many watershed features contribute to the hydrologic regime. Hydrology can be tracked over time using flow gages, but McCabe's Brook does not have longterm gaging data.

Land Use and Land Cover area are factors contributing to watershed hydrology. Land use conversion away from natural vegetative cover tends to compact soils and create impervious surfaces that leads to reduced infiltration, reduced evapotranspiration, and increased runoff. Vegetation removal also leads to increased watershed export of sediment and nutrients. Land development is also associated with a reduction in watershed storage. The landuse in the McCabe's Brook watershed is primarily agriculture, with sections of forest and urban development (Figure 4). The land use and land cover has been broken down by reach subwatershed to better determine distribution along the corridor (Table 5).

Landuse	T1.01	T1.02	T1.03	T1.04	T1.05	T1.06	T1.07	T1.08
Туре	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Agriculture	0	58	22	57	62	77	74	54
Barren	0	0	0	0	0	0	0	0
Brush	0	1	5	4	6	6	12	8
Forest	83	26	20	22	18	8	14	26
Urban	0	11	37	11	10	9	0	9
Urban-Open	0	1	15	7	4	0	0	3
Water	17	0	0	0	0	0	0	0
Wetland	0	1	1	0	1	0	0	1
Area (acres)	23	922	387	406	673	585	78	947

Table 5: Land Use / Land Cover Summary by Reach Subwatershed Area

Impervious area was examined by subwatershed to provide an overview of the stream reaches that are receiving runoff from higher amounts of impervious area (Figure 5). Thresholds of impervious cover above which water quality and stream conditions deteriorate have been found to range between 5 and 10% (e.g.,Brabec et al., 2002; CWP, 2003; Schiff and Benoit, 2007). McCabe's Brook subwatersheds had low to moderate amounts of impervious cover except at the village center of Shelburne where impervious cover was up to 37%.

Wetlands naturally detain water, both reducing the volume and timing of runoff to the channels. Hydric soils are an indication of areas that would naturally be wetlands, although may be an overestimation of the area that they would cover. Hydric soils were identified in areas where current landuse is urban or agriculture, assuming that these areas may represent a rough designation of lost weland areas (Figure 5).

Also mapped are stormwater inputs and flow modifiers observed during field investigations.

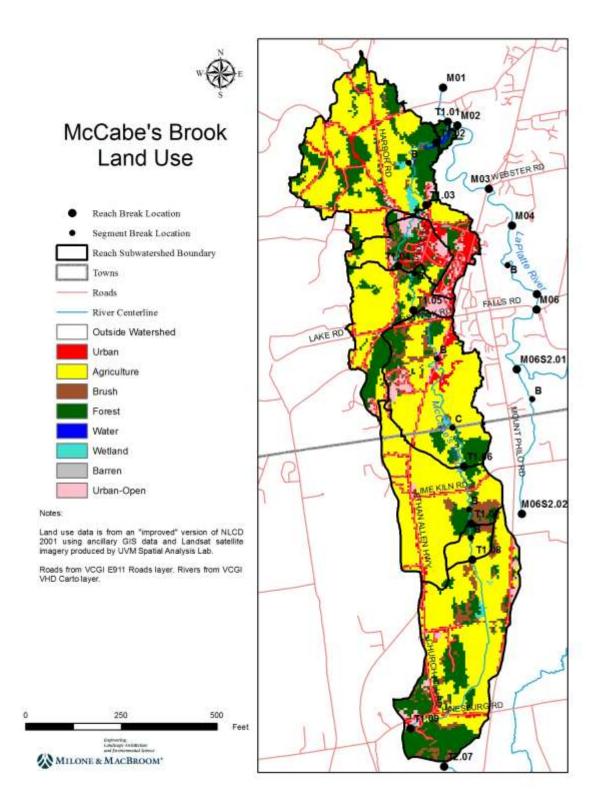


Figure 4: Land Use / Land Cover Map

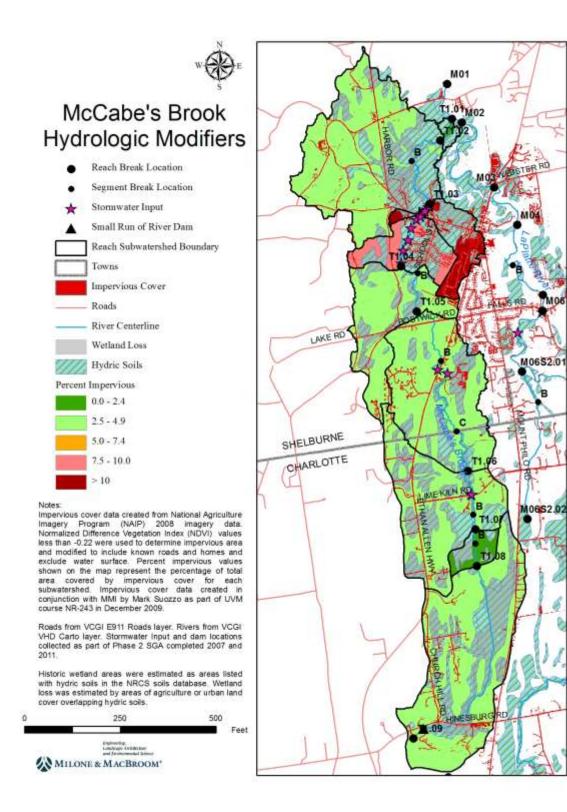


Figure 5: Hydrologic Alterations Map

Identified impacts to the Hydrologic Regime:

- High percentage of agricultural land in all subwatersheds except T1.01 (greater than 20%).
- High percentage of urban land. Most subwatersheds have urban land cover of 9% or higher, except T1.01 and T1.07. T1.03 has 37% urban land cover.
- High percentage of impervious cover in T1.03 (upstream of Harbor Road has 8.2% impervious and downstream has 19.6%).
- There are large areas of the watershed in each subbasin with hydric soils that are now used for either agriculture or urban uses.
- A small dam exists in T1.08 where Homesteader Road crosses McCabe's Brook. This driveway forms an earthen embankment across the floodplain and dams the channel.

6.2 <u>Sediment Regime Stressors</u>

The sediment regime of a river is complex, influenced by sediment sources, hydrology, valley and floodplain type and connection, and in-channel features. Stream sensitivity is closely related to the sediment regime. Larger sediments move in the form of bed load, carried or rolling along the bed, typically only during flood conditions. The movement of these sediments is directly correlated to stream power which is in turn related to the channel geometry, depth, slope and therefore velocity. Sediments also take the form of wash load which is smaller particles that move with the water until settling out in very low velocity conditions. This could occur on floodplains or in this case could be carried to Lake Champlain. As channel geometry and floodplain connections are changed the sediment carrying and depositional characteristics are changed.

6.2.1 Watershed Scale Sediment Regime Stressors

The changes in hydrology discussed in the previous section also affects the sediment regime. If peak volume or timing is changed, sediment transport is also changed. Increased runoff can increase sediment input to the river system. Conversely, instream impoundments or other channel constrictions can both trap sediments upstream and "starve" the channel of sediments downstream. Both cases disrupt the natural balance of transport.

Land use specifically can alter the sediment regime. Agricultural land often has exposed soils and is especially susceptible to surface erosion and can supply significant sediments to the channels. The previous analysis of land use is applicable to determining sediment regime stresses, both urban and agricultural landuse can alter sediment production.

A certain amount of erosion and deposition is natural in an alluvial channel. Some channel features indicate a high sediment load including: steep riffles, mid-channel bars, delta bars, flood chutes, avulsions, and braiding. Significant erosion, mass failures, gully erosion, and tributary rejuvenation contribute to additional instream sediments. When a high number of these features are present, the channel may not be transporting sediment at the equilibrium level (Figure 6).

Identified impacts to the Sediment Load:

- High percentage of agricultural land in all subwatersheds except T1.01.
- High bank erosion in T1.04B and T1.05A (greater than 20% of the banks).
- Moderate bank erosion in T1.03 (5-20% of the banks)
- Multiple mass failures in both T1.04B and T1.05A
- High number of steep riffles and migration features in T1.05A and T1.04B.
- High number of migration features, many due to beaver influence, in T1.03 and T1.05C.
- High density of deposition features in T1.03, T1.04B, T1.05 A,B,C, T1.06 A,B, and T1.07 A,B

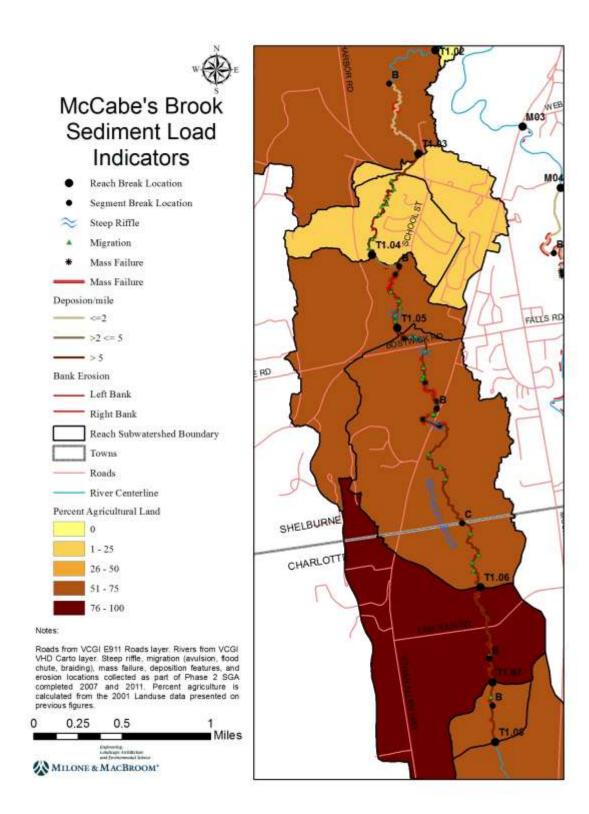


Figure 6: Sediment Load Indicators Map

6.2.2 Reach Scale Sediment Regime Stressors

The sediment load indicators discussed above have a watershed scale effect on sediment loads. Reach scale stressors also affect the stream power and resistance to stream power based on the boundary conditions. Slope and depth modifiers and their associated boundary resistance factors are explored separately.

When channel slopes are increased the channel can adjust causing bed erosion, incision, and trigger channel evolution. Reaches that have been straightened or channelized typically have an increased slope because the distance the channel travels has been reduced. Head cutting of the bed is a symptom of increased channel slope. River corridor encroachments and development can also lead to increased slope as the channel is modified to protect the investment.

Constrictions to either the channel or floodplain can cause backwater upstream. These backwater zones cause sediments to settle out of the water column and deposit. This can cause a decrease in the slope of the channel. These constrictions can be natural or manmade grade controls, undersized bridges or culverts (Figure 7).

Identified impacts that may increase the Channel Slope:

- Major Channel straightening in T1.08.
- Moderate Channel straightening in T1.03, T1.05A, and T1.05B.
- Development along T1.03.
- Headcutting in T1.05A.

Identified impacts that may decrease the Channel Slope:

- Two small dams in T1.08 are ponding water and trapping sediments.
- Natural beaver dams in T1.03, T1.04A, T1.05B and T1.05C.
- Natural grade controls in T1.05A.
- Undersized bridges and culverts specifically noted to attenuate sediment upstream Route 7 in T1.05B, at Bostwick Road in T1.05A, Lime Kiln Road in T1.06A, farm crossings in T1.08.

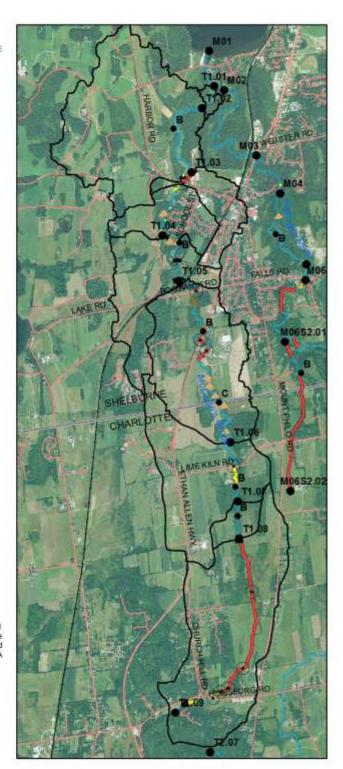


Figure 7: Channel Slope Modifiers Map

Channel depth is directly correlated to stream power (Figure 8). Increases in channel depths can increase stream power that can cause bed erosion, incision, and channel evolution. As a channel deepens, the flow has reduced access to its floodplain. This can be caused by filling of a floodplain, dredging, or incision. Roads, homes, railroads, trails, and other development adjacent to river commonly fills, causing an encroachment into the natural floodplain.

A decrease in channel depth will also affect stream power by spreading the flowing water out over a larger area and decreasing velocities. When depths are decreased, flow velocities decrease and sediments will be deposited. These conditions can occur after gravel mining or bar scalping, neither of which is occurring in McCabe's Brook.

Identified impacts that may increase the Channel Depth:

- Encroachment of Route 7 in T1.05A.
- Encroachment of farm road with possible dredging along T1.08.
- Significant stormwater inputs in T1.03.
- Moderate stormwater inputs in T1.05B and T1.06A.

Identified impacts that may decrease the Channel Depth:

- Sedimentation in the backwater area upstream of Bostwick Road has reduced depth in T1.05A.
- Sedimentation in backwater area upstream of beaver dams in T1.05B and T1.05C.



Figure 8: Channel Depth Modifiers Map

MILONE & MACBROOM*

The resistance of the channel banks to changes is naturally determined by riparian vegetation and the size and cohesion of the bank materials. These factors determine if the bank will be resilient to shear stresses from the water or if erosion will occur. Bank boundary resistance would be reduced where riparian vegetation is reduced, such as in areas with less than 25 feet of vegetated buffer. Bank resistance would be higher in areas with cohesive bank materials. Channel bed boundary resistance would be increased where course bed material or grade controls are present.

Identified impacts that may increase the Boundary Resistance:

- Channel banks were cohesive for T1.02B, T1.03, T1.05C, T1.06B, T1.07A, and T1.07B.
- Channel bed had coarse channel material in T1.04B, T1.05A, T1.05C, T1.06B, T1.07A, T1.07B.
- Two small dams located in T1.08.
- Bank armoring located near road crossings at Teddy Bear Factory in T1.05B.
- Bank armoring located along Route 7 encroachment in T1.05A and B.
- Bank armoring located downstream of Bostwick Road crossing in T1.05A.
- Natural grade control in T1.05A.

Identified impacts that may decrease the Boundary Resistance:

- Buffers were less than 25 feet wide for a large portion of T1.08.
- Bank erosion is occurring at >20% of bank length in T1.04B and T1.05A.

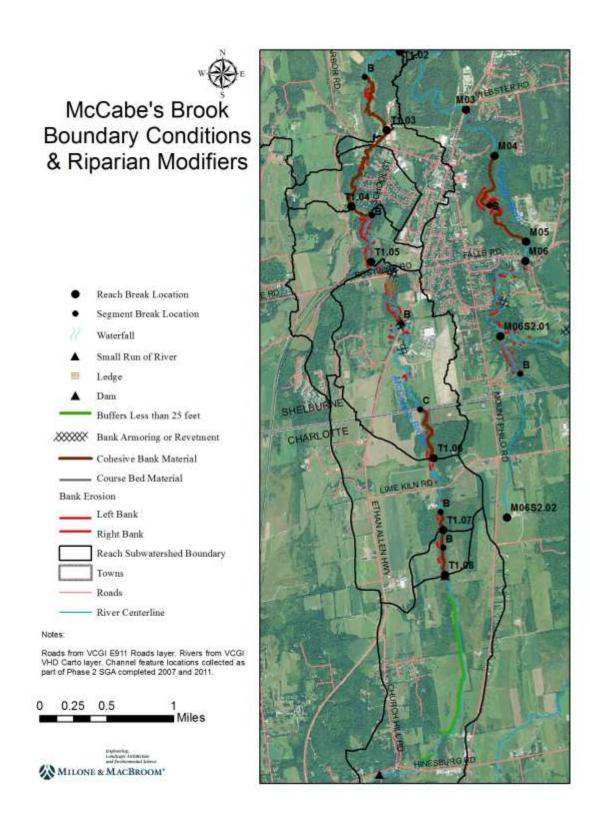


Figure 9: Boundary Condition and Riparian Modifiers Map

6.3 <u>River Stressor Identification Summary</u>

River Stressors have been identified in the previous sections based on river characteristics. Stressors have been summarized for each reach and segment (Table 6).

	Watershed I	nput Stressors	Reach Modification Stressors			
River Segment	Hydrologic	Sediment Load	Stream Power	Boundary Resistance		
T1.08	High Percent Ag Land; Small Run of River Dam; Loss of Wetland	High Percent Ag Land	Increase: Straightening; Encroachment; Dredging Decrease: Dams; Undersize Culverts	Increase: Small Run of River Dam Decrease: Narrow Buffers		
Т1.07В	High Percent Ag Land; Loss of Wetland	Depositional Features; High Percent Ag Land		Increase: Cohesive Banks; Coarse Bed Material		
T1.07A	High Percent Ag Land; Loss of Wetland	Depositional Features; High Percent Ag Land		Increase: Cohesive Banks; Coarse Bed Material		
T1.06B	High Percent Ag Land; Loss of Wetland	Depositional Features; High Percent Ag Land		Increase: Cohesive Banks; Coarse Bed Material		
T1.06A	High Percent Ag Land; Loss of Wetland	Depositional Features; High Percent Ag Land Depositional	Increase: Development; Stormwater Input Decrease: Undersize Culvert			
T1.05C	High Percent Ag Land; Loss of Wetland	Features; High Percent Ag Land; Lateral Migration	Decrease: Beaver Dams	Increase: Cohesive Banks; Coarse Bed Material		
Т1.05В	High Percent Ag Land; Loss of Wetland	Depositional Features; High Percent Ag Land	Increase: Straightening; Stormwater Input Decrease: Beaver Dams; Undersize Culvert	Increase: Bank Armoring		
	High Percent Ag Land; Loss of	Mass Failures; High Bank Erosion; Depositional Features; High Percent Ag Land; Steep Riffles; Lateral	Increase: Straightening; Headcutting Encroachment Decrease: Grade Control;	Increase: Coarse Bed Material; Bank Armoring; Grade Control Decrease:		
T1.05A	Wetland	Migration	Undersized Culvert	Bank Erosion		

 Table 6: River Stressor Identification Summary

	Watershed I	nput Stressors	Reach Modif	ication Stressors
River				
Segment	Hydrologic	Sediment Load	Stream Power	Boundary Resistance
		Mass Failures; High		
		Bank Erosion;		
		Depositional		
		Features; High		
	High Percent Ag	Percent Ag Land;		Increase: Coarse Bed
	Land; Loss of	Steep Riffles; Lateral		Material Decrease:
T1.04B	Wetland	Migration		Bank Erosion
	High Percent Ag			
	Land; Loss of		Decrease: Beaver	
T1.04A	Wetland	High Percent Ag Land	Dams	
	Very High Percent			
	Urban Land; High		Increase:	
	Percent Impervious	Moderate Bank	Straightening;	
	Cover; High Percent	Erosion; Depositional	Development;	
	Ag Land; Loss of	Features; High	Stormwater Input	
	Wetland;	Percent Ag Land;	Decrease: Beaver	Increase: Cohesive
T1.03	Stormwater Inputs	Lateral Migration	Dams	Banks
	High Percent Ag			
	Land; Loss of			Increase: Cohesive
T1.02B	Wetland	High Percent Ag Land		Banks
	High Percent Ag			
	Land; Loss of			
T1.02A	Wetland	High Percent Ag Land		

 Table 6: River Stressor Identification Summary (continued)

6.4 <u>Constraints to Sediment Transport and Attenuation</u>

A reach's current channel evolution process stage and an understanding of how quickly the stage might change is important to understand before implementation of projects. An analysis of stream departure and sensitivity has been conducted. A river channel will over time balance stream power and sediment in a dynamic equilibrium. Channel adjustments will occur when the channel is out of equilibrium. In equilibrium, reaches could be a transport reach or a sediment source reach based on natural channel conditions. Transport processes can be altered based on many of the stressors examined above. Viewing this information at the watershed scale is important for understanding the system as a whole.

The Phase 1 analysis has identified that all McCabe's Brook reaches would naturally be in Coarse Equilibrium with Fine Deposition (Figure 10). Streams of this type are generally sand, gravel or cobble bed streams in an unconfined valley that are not incised or entrenched. Streams

of this type would typically have buffers and minimal bank erosion. Transport and Deposition would be in equilibrium and fine sediment deposition can occur on floodplains.

The Phase 2 data indicates that many reaches are still in the reference sediment regime of Coarse Equilibrium with Fine Deposition. T1.04A, T1.05A, and T1.07B have departed from the reference condition and are currently Fine Source and Transport and Coarse Deposition reaches (Figure 10). These reaches have low bank armoring and an incision ratio > 1.3. These reaches may represent a departure due to a vertical profile change. These are often historically straightened, incised or entrenched streams with little boundary resistance and increased bank erosion. T1.07B could be considered to be in Equilibrium because it is in Stage I of the channel evolution process and in Good geomorphic condition.

Constraints to adjustment have also been considered (Figure 10). Natural grade controls and dams will prevent vertical adjustment. Bedrock under the channel bed controls vertical adjustment in T1.05A. Dams can also prevent vertical adjustment and are present in T1.08. Constraints from lateral adjustment have been identified with buildings, roads, and driveways in the river corridor assuming that adjustment would not be tolerated within 166 feet of buildings or 50 feet of roads and driveways. Protection of existing infrastructure often dictates river management. Lateral channel migration is often not tolerated near infrastructure and bank armoring or other management techniques are used to limit the channel location. These constraints help when planning for possible locations to mitigate for sediment regime departures.

	Const	raints	Tra	nsport	A	ttenuation	
River Segment	Vertical	Lateral	Natural	Converted	Natural	Increased	Asset
T1.08	human	human					
T1.07B				Х		Х	
T1.07A						Х	
T1.06B						х	Х
T1.06A		human				х	х
T1.05C						Х	
T1.05B		human				х	
T1.05A	natural	human		х		х	
T1.04B						Х	Х
T1.04A				Х			
T1.03		human				х	
T1.02B							Х
T1.02A							Х

Table 7: I	Departure	Analysis	Table

McCabe's Brook Sediment Regime

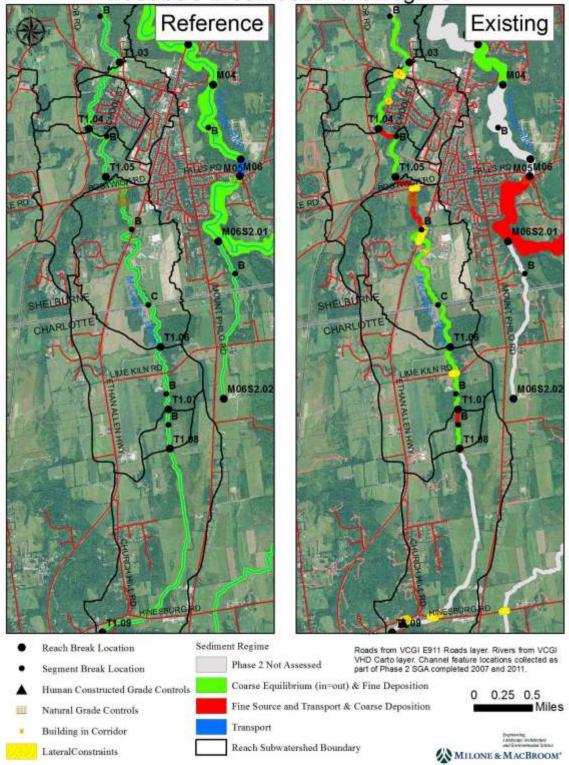


Figure 10: Sediment Regime Departure Map

Stream sensitivity is an indication of the likelihood of the occurrence of vertical and lateral adjustments and is controlled by natural and human caused processes. The Stream sensitivity is determined based on Phase 2 assessment data. The Sensitivity is assigned based on the Existing Geomorphic Stream type and its current condition if reference or good, in major adjustment or has departed from its reference stream type. Sensitivity considers that some stream types naturally undergo lateral or vertical adjustments more easily because of their materials or form.

Reference sensitivity for all McCabe's reaches is High. Stream sensitivity level has been raised for three reaches due to current conditions (Figure 11). T1.05A is extreme and T1.03 and T1.04B are very high. T1.05A has extreme sensitivity due to its poor condition and departure from a C4 to F4 stream type. T1.03 and T1.04B have very high sensitivity due to their fair geomorphic condition and adjustment.

Current aggradation and degredation processes were examined. T1.05A has experienced historic degradation. No reaches are currently experiencing vertical adjustment, either aggradation or degradation. If certain reaches were going through vertical adjustment, those reaches could be prioritized for certain restoration projects.

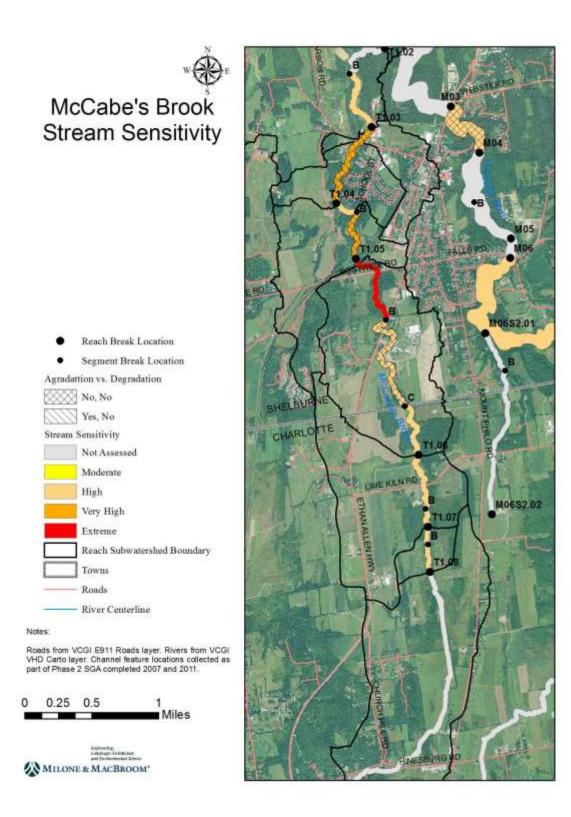


Figure 11: Stream Sensitivity Map

7.0 <u>PRELIMINARY PROJECT IDENTIFICATION AND MANAGEMENT</u> <u>RECOMMENDATIONS</u>

7.1 <u>Watershed Level Management Options</u>

7.1.1 Drainage and Stormwater Management

Watershed hydrology may contribute to adjustments occurring at the reach level. Runoff characteristics including the timing, volume, and duration of peak flows can be changed due to landuse changes. As hydrology changes, a stream channel will adjust to carry the new flows and try to reach equilibrium. Runoff from roads, construction sites, and agricultural fields also increase sediment supply to the rivers.

Most reaches have high percentages of both agricultural land and urban land. Urban land and impervious cover is concentrated at T1.03, but all subwatersheds have urban land cover of 9% or higher except T1.01 and T1.07. Runoff from developed urban land may have reached a critical level in the lower reaches near the Shelburne Village. Agricultural lands and rural residential areas in the upper reaches of the watershed also contribute stormwater runoff and increased sediment supply to the channel. Throughout the watershed landuse conversion has reduced wetlands which would have naturally detained stormwater runoff.

By planning proactively, Towns can reduce potential stormwater runoff problems and avoid costly future retrofit and repairs to damaged infrastructure. Overall goals to reduce negative impacts of stormwater runoff are to reduce sources, increase storage, and decrease transport. Strategies to address drainage and stormwater management:

- Require Low Impact Development principles for future development. Model ordinances and planning assistance is provided by the Vermont League of Cities and Towns.
- Increase required level of stormwater treatment for development projects. Specifically require treatment for smaller projects falling below the regulatory threshold for ACT250 review or the States Stormwater Management Rule.
- Shelburne also has a Stormwater-Impaired Watershed Overlay District that requires a higher level of stormwater treatment, but this district does not cover McCabe's Brook. Consider extending the provisions of that district to McCabe's Brook drainage.
- Slow drainage and reduce sediment inputs from rural roads. Use strategies provided by the VTANR Better Back Roads Program.
- Retrofit existing drainage systems collecting runoff from urban areas to include inline treatment.

- Disconnect impervious surfaces from drainage systems and encourage infiltration.
- Protect existing wetlands and floodplain storage areas from development so that these natural features can continue to store and treat stormwater runoff.

7.1.2 Floodplain and River Corridor Planning and Protection

Floodplains carry water that overflows from the main channel during storm events and serve to store water that could otherwise cause flooding and damage. Floodplains allow water to spread out and slow allowing sediments to settle out of the water and reduce stream power and potential erosion. Floodplain functions are reduced when they are filled during development or when a channel is straightened or incised and the water cannot access the floodplain during high flows.

Protection and enhancement of floodplain functions is the most cost effective strategy for protecting river function. Local zoning should limit structures and fill in the floodplain. By keeping development farther from the river it reduces need for active channel management to protect investments.

Shelburne and Charlotte both participate in FEMA's NFIP program that establishes floodplain boundaries and regulates land uses within them. The Special Flood Hazard Area (SFHA) is defined for McCabe's Brook downstream of the Railroad Crossing (downstream of Bostwick Road), but the floodplain is not defined or regulated by this program upstream of that crossing. Shelburne has a Water Course Overlay District that includes McCabe's Brook upstream of the Railroad Crossing that extends the regulations of the SFHA to include an area of 100 feet on both sides of McCabe's Brook. Within Shelburne this provides additional protections, but may not include the entire floodplain as would be defined in a detailed study. The SFHA does not extend into Charlotte, so this tool is not currently used.

Charlotte has included a 100 foot area of land on both sides of McCabe's Brook in its Conservation Zoning District. This district limits new construction to agriculture and forestry with conditional uses including accessory structure, municipal facilities, nature center, parking facility (unpaved surface only), and shoreland improvements.

VTANR has developed criteria for establishing a Fluvial Erosion Hazard Zone (FEH) which establishes a buffer zone around the river based on channel and valley characteristics and knowledge of the likelihood of channel movement. Some towns have adopted FEH zones into local zoning to limit development within these areas.

It is recommended that both Shelburne and Charlotte adopt a FEH zone around the corridor. This will enhance benefits of the established zones based on river science.

7.1.3 Buffer Establishment and Protection

Protection of the floodplains as discussed above works in tandem with buffer establishment and protection. The steps taken in floodplain protection are focused on maintaining flood storage and sediment removal benefits and reducing hazards. A riparian buffer of vegetation adjacent to a river is typically within the floodplain, but provides additional benefits to river stability and water and habitat quality. Establishment of a wooded vegetated buffer will improve river quality. There are many uses that may be appropriate for a floodplain that would degrade water quality if occurring near the river edge (i.e. animal grazing).

Regulatory policies should be put in place to encourage maintaining a wooded vegetated buffer on both sides of all water courses.

Specific projects identified in the following sections should be pursued to re-establish wooded buffers where they have been lost.

7.1.4 Stream Crossings

McCabe's Brook has 12 crossing structures along the assessed length. These crossing structures are often undersized and block natural movement of sediment and aquatic organism passage. Crossing structure do not just impact the local area of the stream. Fish migrations can be cut off, preventing the natural life cycle patterns. When the movement of sediment is blocked, the river downstream can become "sediment starved" and begin to erode the channel bed. Specific opportunities for addressing problems are discussed in the section below, although each structure has a much larger impact on the entire system.

7.2 <u>Site Level Management Options</u>

Site-level management options have been identified within the McCabe's Brook watershed (Table 8).

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.08 #1 RGA: N/A Sens: N/A CEM: N/A	This reach has a significant amount of agriculture in the corridor. The wetland has been straightened and natural vegetation has been lost post agriculture. The section near and upstream of Hinesburg Road has	Protect Wetland Corridors - Work with landowners to protect identified wetland areas			Improved habitat; improved		Nordic Farm; Pizzagalli; Ferreira; Foote; Schermerhorn ; Small Landowners near	
	residential development encroaching on the wetland.	from additional development or active agriculture.	High	#10: High	water quality.	Variable	Hinesburg Road	
T1.08 #2	Historic agricultural practices have removed natural vegetation, some sections may naturally have wetland vegetation, but are currently grasses including switch grass. Long sections of the flow path have minimal buffers that lack woody vegetation.	Plant Stream Buffers / Wetland Restoration- Delineate wetland area and identify priority areas. Work with landowners to restore natural vegetation within the riparian buffer. Hydric soils indicate that some sections would naturally be wetlands.	High	High	Improved habitat; improved water quality.		Pizzagalli- 1,300' Left; Ferreira - 1,600' Both; Foote - 1,700' Both	
T1.08 #3	Pizzagalli Property: A farm road runs parallel to the channel. The road is raised and blocks access to the left floodplain. There is evidence of periodic dredging along with road maintenance. The channel has the form of a straight, wide, featureless ditch at the edge of the road. Natural vegetation and shade is minimal	Restore Wetland Channel - Reconnect channel to left wetlands. This could mean abandoning or removing road where it prevents access to adjacent wetlands. Recommend no more dredging in channel. Work with landowner to allow for passive restoration of the channel by allowing natural vegetation to grow on the banks and not ditabing	llich		Improved habitat; Improve adjacent wetland attenuatio	Med	Remo	
	due to road location.	and not ditching.	High.	#5: High.	n.	Mod	Pizzagalli	

Table 8: River Corridor Plan Project Identification Table.

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.08 #4	Five small culvert crossings exist including Hinesburg Road and four farm crossings. Each structure is undersized with scour downstream. Culverts are backwatered and do not appear to be a problem for fish passage.	Remove/ Replace Structures - Each of the structures could be replaced with larger structures. Habitat quality and reconnected area should be considered before culvert replacement.	High, farm crossings do not have as many complicati ons as road structures.	Low, although small, not in major conflict with river or organisms	Improved habitat. Wildlife habitat connectivi ty.	High for Hinesburg Road. Low for farm crossings.	Town of Charlotte; Pizzagalli; Foote; Schermerhorn x 2	
T1.08 #5	A small run-of-river dam is located at Homesteader Road. The road embankment blocks the river, forming a small pond upstream. A pipe overflow outlet carries the stream flow through the embankment. Only access to four homes.	Remove/ Replace Structures - Removal or retrofit of this structure could be considered. The location at the upstream extent of the watershed limits upstream habitat. There are no reported flooding or erosion issues with this structure.	Low, Would need to remove pond and install culvert under road.	Low, very little habitat upstream. No other issues.	Restore channel to natural conditions . Reduce flood risk.	High	Church Hill Homeowners	
T1.08 #6	A small partially breached run- of-river dam is located upstream of a farm ford on the Nordic Farm property near the downstream end of the reach. The remaining stone structure impounds the river approximately 600 feet upstream. Impoundment is covered in thick algae that would smother natural species.	Remove Structure - Removal of remaining stone spillway and rubble would remove the impoundment and restore natural sediment and organism passage.	High, easy access from farm road. Minimal excavation	#9: High, Effects large area upstream and captures a lot of sediment	Restore channel to natural conditions ; improve habitat.	Low.	Nordic Farm	

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.07B #1 RGA: Good Sens: High CEM: I (F)	Nordic Farm: Near bank vegetation is primarily herbaceous with some invasive honeysuckle and switch grass. Downstream corridor is wooded. Area part of historic impoundment.	Plant Stream Buffers - Evaluate appropriate species. Plant woody species in corridor and remove invasive	High, easy access. No other current uses.	High	Improved habitat; improved water quality.	Low.	Nordic Farm	
T1.07B #2	Nordic Farm: At the downstream end of the reach the remains of an old earthen dam embankment constrict floodplain flow. Rock rubble located in channel just upstream of dam embankment.	Remove Constriction - Excavate the earthen embankment to promote floodplain flow into the forested downstream reach. Remove rock rubble from channel.	High	Low	Improve floodplain attenuatio n; Reduce channel erosion.	Low	Nordic Farm	Landowner
T1.07B/A + T1.06B #3	Nordic Farm: River Corridor is primarily undeveloped and forested. The riparian area is in good condition and protections should be put in place to ensure that this will not be lost to future land use changes.	Protect River Corridors - Preserve these "in-regime" reaches by preventing future encroachment. The property has an easement with the Vermont Land Trust already. Work with landowners to secure specific protections for the river corridor.	High, Land currently forested and parcel conserved.	#6: High, Landowne r controls a significant portion of watershed.	Improve floodplain attenuatio n; Reduce channel erosion.	Low, Land has easement. Outreach to understan d managem ent.	Nordic Farm	Landowner
T1.07A #1 RGA: Good Sens: High CEM: I (F)	Multi-reach river corridor protection project. See above.							
T1.06B #1 RGA: Good Sens: High CEM: I (F)	Multi-reach river corridor protection project. See above.							

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.06A #1 RGA: Reference Sens: High CEM: I (F)	Nordic Farm and Binter horse farm on Lime Kiln Road: The channel is in reference condition. Flows through wet meadow and has adjacent wetlands. Some beaver activity.	Protect River Corridors - Preserve this "in-regime" reach by preventing future encroachment. The majority of the reach has an easement already. Work with landowners to secure specific protections for the river corridor and expand to unconserved property.	High, coordinati on with landowner s	High, reference condition of reach is important to protect.	Improve water quality; Wildlife habitat connectivi ty.	Mod	Nordic Farm- ds of Lime Kiln Road; Binter - us of Lime Kiln Rd	Landowners
T1.06A #2	Lime Kiln Road Culvert: Structure is undersized. It is disrupting sediment transport and causing scour downstream. The culvert failed recently and was repaired with the same size culvert.	Replace Structure - Lime Kiln Road culvert with a larger structure that would be more compatible with stream processes.	High, straightfor ward culvert replaceme nt on dirt rural road.	Mod, not extreme issues. When work is required, replace with larger culvert.	Improve aquatic organism passage; reduce erosion risks.	High.	Town of Charlotte	
T1.06A #3	Nordic Farm and horse farm on Lime Kiln Road: Near bank vegetation is primarily herbaceous and primarily hydric soils.	Maintain/Improve Stream Buffers - Plant woody species in corridor. Investigate appropriate species. Wet meadow is likely reference condition.	Mod	Mod				
T1.05C #1 RGA: Reference Sens: High CEM: I (F)	Nordic Farm and Titus property off of Lime Kiln Road: The channel is in reference condition. Flows through wet meadow and has adjacent wetlands. Some beaver activity.	Protect River Corridors - Preserve this "in-regime" reach by preventing future encroachment. The majority of the reach has an easement already. Work with landowners to secure specific protections for the river corridor.	High, coordinati on with landowner s	High, reference condition of reach is important to protect.	Improve water quality; Wildlife habitat connectivi ty.	Mod	Nordic Farm; Titus - small segment on river bend.	Landowners

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.05C #2	Nordic Farm: Near bank vegetation is primarily herbaceous. Little overhanging vegetation or shade.	Maintain/ Improve Stream Buffers - Plant woody species in corridor. Investigate appropriate species. Wet meadow is likely reference condition.						
T1.05B #3 RGA: Good Sens: High CEM: II (D)	Multiple Properties in lower section of reach: Riparian buffers are narrow and primarily herbaceous with little overhanging vegetation or shade. This area is historically agricultural and woody vegetation has not recovered.	Maintain / Improve Stream Buffers - Plant woody species in corridor. Upstream portion of reach has a wooded buffer, then flows close to agricultural field and Route 7 corridor development.	High	Mod	Improved habitat; improved water quality.	Low	Mack - 600'; TB - 1000' us driveway, 900' ds driveway; Ridgefield Homeowners Assoc 950'	CREP? Chris Smith, FWS
T1.05B #4	Teddy Bear Factory: Culvert is large enough, although perched creating a 0.5 ft drop at the outlet that would block AOP. Flat apron at upstream end could also affect AOP. Approach channels are constricted upstream and wide and flat downstream.	Retrofit Structure - Alter existing structure's inlet and outlet channels and entrances to improve AOP.	High	Mod, reference stream conditions upstream = good reconnect ed habitat.	Improved habitat. Wildlife habitat connectivi ty.	Mod	Teddy Bear Factory	FWS
T1.05B #5	Route 7: Culvert is undersized and the embankment fills the floodplain. Sediment is accumulating upstream.	Replace Structure - Replace culvert with a larger structure that will accommodate sediment transport.	Low, Route 7 is a high traffic road. Replacem ent unlikely.	#4: High.	Improved habitat. Wildlife habitat connectivi ty.	High	State of Vermont	Vtrans; FWS

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.05B/A #1	Route 7: The road embankment completely fills the floodplain at the crossing location. Downstream of the crossing the river turns and flows parallel to the embankment, where it is severely constricted by the embankment fill. Mass failures have resulted upstream and downstream of the constriction. Armor at toe of Route 7 embankment has some damage.	Remove Constriction / Floodplain Restoration: Remove constriction caused by embankment. Route 7 is a major travel corridor and unlikely to be re-routed or accommodate a narrower embankment. Explore creation of a compound channel with floodplain using undeveloped land on the opposite bank.	Mod, Bedrock outcroppin gs are present downstrea m and may prevent excavation of a compound channel.	#1: High, This constrictio n appears to be destabilizi ng upstream and downstrea m reaches.	Improved sediment transport; reduced erosion risk; Improved floodplain attenuatio n.	High	Ridgefield Homeowners Association; Meach Real Estate Trust	Vtrans to protect Route 7.
T1.05B/A #2	Multiple mass failures exist both upstream and downstream of the Route 7 crossing. Tall till slopes are exposed, contributing large amounts of mixed sediment to the river downstream.	Bank Stabilization - Stabilize multiple mass failures. Guidance recommends waiting for channel to finish evolution because channel still in flux. Possibly address after active floodplain restoration?	Low, Channel out of regime.	Low, Channel out of regime and constricte d upstream.				
T1.05A #3 RGA: Poor Sens: Extreme CEM: III (F)	This reach is unstable, in poor geomorphic condition, and exhibiting widening and planform change. It will continue to meander as it reaches equilibrium. It has reduced floodplain connectivity due to moderate incision. The channel is constrained at multiple locations by bedrock and two crossing structures. Deposition.	Protect River Corridors - This reach flows through a primarily undeveloped forested riparian area. Protection of this wooded corridor will allow the river to meander as necessary to reach equilibrium, continue to provide habitat and water quality functions, and prevent unnecessary flood and erosion risks.	High, currently undevelop ed. Clearly unstable.	High	Wildlife habitat connectivi ty; reduce erosion risk.	Mod	Meach Cove Real Estate Trust - US of Bostwick; Shelburne Museum - DS of Bostwick.	

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.05A #4	Bostwick Road Culvert: This culvert is undersized and completely filling the floodplain with a tall embankment. The structure is accumulating debris upstream and has a very large cobble and gravel delta extending a few hundred feet upstream. Scour is occurring downstream and an outlet drop of 0.5 ft blocks AOP.	Replace Structures - The Bostwick Road culvert should be replaced with a larger structure than can accommodate sediment and flood water movement along with AOP.	Mod, This is a very tall road embankm ent that will make replaceme nt difficult.	#2: High, sediment and organism transport is greatly reduced.	Wildlife habitat connectivi ty; sediment continuity ; reduce erosion risk.	High	Town of Shelburne	FWS
T1.05A #5	Railroad Arch: This concrete and masonry arch structure has a concrete bottom. The structure is undersized. It blocks AOP due to low water depth and a 1 ft outlet drop. This structure has arrested a headcut, preventing incision from moving upstream. Coarse sediment has accumulated upstream.	Retrofit/ Replace Structure - The structure should be replaced to facilitate natural sediment transport. If replaced, the design should include grade controls to keep the headcut from moving upstream. The structure could be retrofit to better accommodate AOP if the replacement of the structure is not found to be feasible.	Mod, work at active railroad structures is difficult without failure.	Mod, downstrea m headcut must be considere d.	Wildlife habitat connectivi ty; sediment continuity ; reduce erosion risk.	High	State of Vermont	FWS
T1.04B #1 RGA: Fair Sens: Very High CEM: II (F)	This reach is exhibiting incision and planform change. Erosion is occurring and the channel will continue to meander as it reaches equilibrium. It has reduced floodplain connectivity due to moderate incision. This would be an attenuation asset, located downstream of a reach that is out of its sediment regime.	Protect River Corridors - This reach flows through a primarily undeveloped forested riparian area. Protection of this corridor will allow the river to meander as necessary to reach equilibrium, continue to provide habitat and water quality functions, and prevent unnecessary flood and erosion risks.	High, already in floodplain overlay.	#7: High	Improved habitat; improved water quality.	Low	Shelburne Museum on Right; Meach Cove Real Estate Trust on Left	

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.04B #2	The segment has an adequate wooded buffer over most of the length, but two sections have herbaceous vegetation in what appears to be historic agricultural fields.	Plant Stream Buffers - Plant woody stream buffers in riparian areas with no trees.	High	Low, small segments in wooded reach.	Improved habitat.	Low	Shelburne Museum- 400' on Right; Meach Cove Real Estate Trust- 750' on Left	
T1.04A #1 RGA: Good Sens: High CEM: II (F)	This reach is exhibiting incision. Erosion is occurring and the channel will continue to meander as it reaches equilibrium. It has reduced floodplain connectivity due to moderate incision. This would be an attenuation asset, located downstream of a reach that is out of it's sediment regime.	Protect River Corridors - This reach flows through an undeveloped herbaceous riparian area in relatively close proximity to a residential development. Protection of this corridor will allow the river to meander as necessary to reach equilibrium, continue to provide habitat and water quality functions, and prevent unnecessary flood and erosion risks.	High	High	Improved habitat; improved water quality.	Low	Town of Shelburne on Right; Meach Cove Real Estate Trust on Left	
T1.04A #2	The segment flows through an herbaceous riparian area with very few trees or shrubs. Invasive species are present. Some wet meadow conditions exist.	Plant Stream Buffers - Evaluate existing condition. Determine stream planting and invasive management plans.	High	Mod	Improved Water Quality; Improved habitat.	Low	Town of Shelburne- 300' on Left & 800' on Right; Meach Cove Real Estate Trust 300' on Both	

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.03 #1 RGA: Fair Sens: Very High CEM: IIc (D)	Residential development in the School Street neighborhood has encroached on the middle section of the reach. Reach is in residential zoning. Evolution stage II indicates that this	Protect River Corridors - Protect undeveloped areas to ensure the river has adequate corridor and does not become pinched between existing and		Low, has floodplain overlay			Town of Shelburne on Right; Meach Cove Real Estate Trust on Left; Harbor Crossing Owners Both Sides; Various small residential	
T1.03 #2	segment may continue to adjust. Upstream of Harbor Road: The upper section of the reach is in a wooded floodplain. The lower section is primarily herbaceous plants with few trees.	future development. Plant Stream Buffers - Plant woody stream buffers in riparian areas with no trees. This is an approximately 1,400 foot section upstream of Harbor Road.	High	zone. High, significant developm ent in vicinity impacting river.	Improved habitat; improved water quality.	low	harbor Crossing Owners Association - Both Sides	
T1.03 #3	At the Shelburne Town Garage and Wastewater Treatment Plant on Turtle Lane the riparian buffer is narrow and lacking natural vegetation. The buildings are less than 100 ft from river. Fill is visible at the top of the bank and storage of materials is in the floodplain. The riparian buffer is narrow and non-existent in locations.	Plant Stream Buffers / Restore Floodplain - Remove storage of materials and fill from the riparian zone behind the buildings. Plant woody stream buffers in riparian areas.	High	#3: High, this will set a good example and clean up the floodplain and bank.	quinty.		Town of Shelburne - 400' on right.	

River Segment / Condition	Site Description including Stressors and Constraints	Project or Strategy Description	Technical Feasibility	Priority	Project Benefits	Costs	Landowner/ Commitment	Potential Partners with LWP
T1.02B #1 RGA: Good Sens: High CEM: III (D)	This reach is very close to Lake Champlain and therefore management directly impacts the Bay and Lake. The majority of the river corridor and a large amount of the subwatersheds has been conserved, but specific land management should be investigated for compatibility with the river and lake.	Protect River Corridors - Work with landowners to manage inputs of runoff and sediment to river.	High, land conserved. Needs manageme nt plan.	#8: High, proximity to lake increases priority.	Improved water quality.	Low	The Nature Conservancy - Preserve adjacent to river; Michaela Ryan Farm - Conserved in corridor and tributary drainage.	
T1.02B #2	Floodplain areas have limited woody vegetation in what looks like historic agricultural fields. Invasive species are present including honeysuckle, buckthorn, and flowering rush.	Plant River Corridors - Investigate reference floodplain condition. Remove invasive species. Plant appropriate species if needed.	High, land conserved.	Low, land preserved.				
T1.02A RGA: N/A Sens: N/A CEM: N/A	Manage with T1.02A. Both are affected by lake influence depending on the season. These segments have the same landowners and management issues.	Projects for T1.02B apply.						
T1.01 RGA: N/A Sens: N/A CEM: N/A	NO PROJECTS. This reach is in The Nature Conservancy Preserve.							

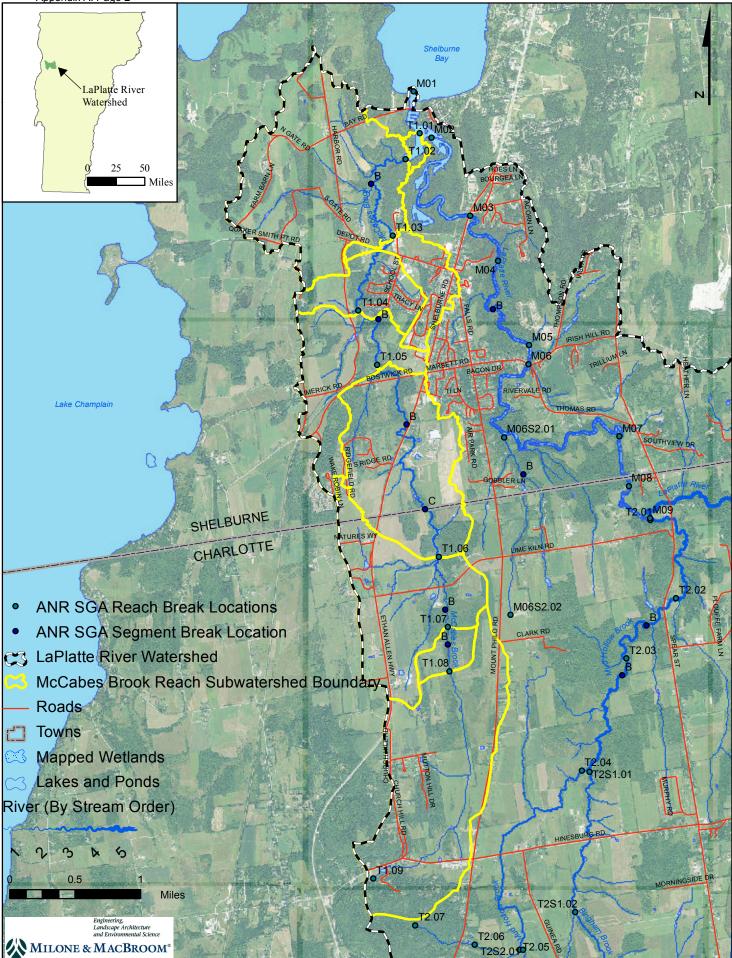
8.0 <u>REFERENCES</u>

- Brabec, E., Schulte, S., and Richards, P. L., 2002, Impervious surfaces and water quality: A review of current literature and its implications for watershed planning: Journal of Planning Literature, v. 16, no. 4, p. 499-514.
- Clark, J., Schiff, R., and Hoadley, A. W., 2011, LaPlatte River and McCabes Brook Stream Gaging Project, Shelburne, Charlotte, & Hinesburg, Vermont: LaPlatte Watershed Partnership.
- CWP, 2003, Is impervious cover still important? Impacts of Urbanization on Downstream Receiving Waters: Runoff Rundown, Center for Watershed Protection, v. 9, p. 1-15.
- Godfrey, L., 2007, Phase 2 Stream Geomorphic Assessments, Lower LaPlatte River & McCabe's Brook, Shelburne and Charlotte, Vermont: LaPlatte Watershed Partnership, with support from VT DEC River Management Program and Lewis Creek Association.
- Hoadley, B., 2008, Shelburne Bay Tributaries LaPlatte River (Background and Interpretation of Results: 2004-2007).
- Kline, M., 2010, Vermont Agency of Natural Resources River Corridor Planning Guide to Identify and Develop River Corridor Protection and Restoration Projects: Vermont River Management Program.
- Montgomery, D. R., and Buffington, J. M., 1993, Channel classification, prediction of channel response, and assessment of channel condition (TFW-SH10-93-002): Timber, Fish, and Wildlife Agreement, Department of Natural Resources.
- Olson, S., 2002, Flow-Frequency Characteristics of Vermont Streams: U.S. Geological Survey in cooperation with the Vermont Agency of Transportation, WRI Report 02-4238.
- Rosgen, D., and Silvey, L., 1996, Applied River Morphology: Pagosa Springs, CO, Wildland Hydrology.
- Rosgen, D., Silvey, L., and Frantila, D., 2006, Watershed Assessment of River Stability and Sediment Supply (WARSSS): Fort Collins, CO, Wildland Hydrology.
- Schiff, R., and Benoit, G., 2007, Effects of impervious cover at multiple spatial scales on coastal watershed streams: Journal of the American Water Resources Association, v. 43, no. 3, p. 712-730.
- Schiff, R., Clark, J. S., Alexander, G., and Kline, M., 2008, The Vermont Agency of Natural Resources Reach Habitat Assessment (RHA): Prepared by Milone & MacBroom, Inc. with the Vermont Agency of Natural Resources, Departments of Environmental Conservation and Fish and Wildlife.
- Thompson, E. H., and Sorenson, E. R., 2005, Wetland, woodland, and wildland: A guide to the natural communities of Vermont: Lebanon, NH, University Press of New England.
- VTANR, 2007, Vermont Stream Geomorphic Assessment Protocol Handbooks: Remote Sensing and Field Surveys Techniques for Conducting Watershed and Reach Level Assessments (<u>http://www.anr.state.vt.us/dec/waterq/rivers/htm/rv_geoassesspro.htm</u>): Vermont Agency of Natural Programmers Department of Environmental Concernation of Water Ovelity, Private Assessment

Resources, Department of Environmental Conservation, Division of Water Quality, River Management Program, Acquired via the internet May 17, 2007.

Appendix A: Page 1 McCabe's Brook Mapping Legend

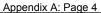
•	Reach Break Location		Encroachment
•	Stormwater Input	27 2 73	Mass Failure Straightening
<u> </u>	Beaver Dam Debris Jam		Development
5 <	Dredging Gully		Buffers Less than 25 feet Bank Armoring or Revetment
*	Mass Failure Migration	Bank E	Erosion Left Bank
\otimes	Cross Section NOT Representative		Right Bank Pageh Subwatershed Boundary
	Cross Section Representative Animal Crossing		Reach Subwatershed Boundary Towns
	Irrigation Steep Riffle		Roads River Centerline
*	Head Cut		Parcel Boundary Town Land and TNC Land
▓	Stream Ford Waterfall		Vermont Land Trust Easement
	Small Run of River		


- Ledge
- ▲ Dam
- Heridge
- Culvert

Maping Sources:


Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust, Town Land and TNC Land updated January 2010 and VLT Easements updated December 2011. Map for planning purposes only. See legend on separate sheet. Updated December 2011.

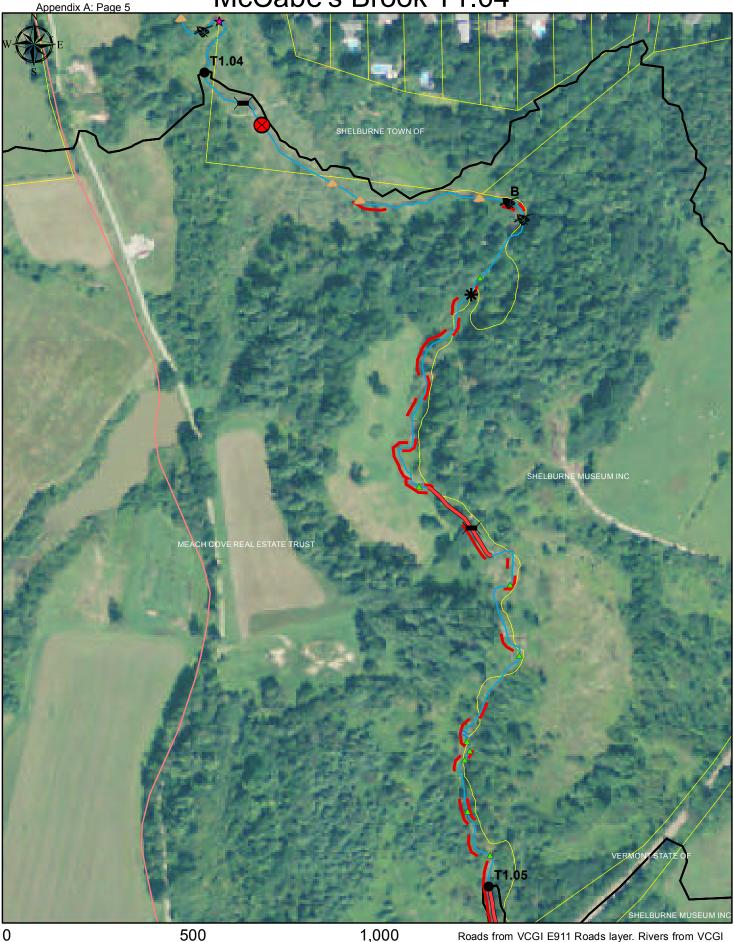
Appendix A: Page 2


McCabe's Brook T1.01 & T1.02

MILONE & MACBROOM®

Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

McCabe's Brook T1.03



0.25 — Miles

Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

Engineering, Landscape Architecture and Environmental Science MILONE & MACBROOM®

McCabe's Brook T1.04

MILONE & MACBROOM*

Engineering, Landscape Architecture and Environmental Science 1,000 — Feet Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

McCabe's Brook T1.05A

Engineering. Landscape Architecture and Environmental Science MILONE & MACBROOM* Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

McCabe's Brook T1.05B

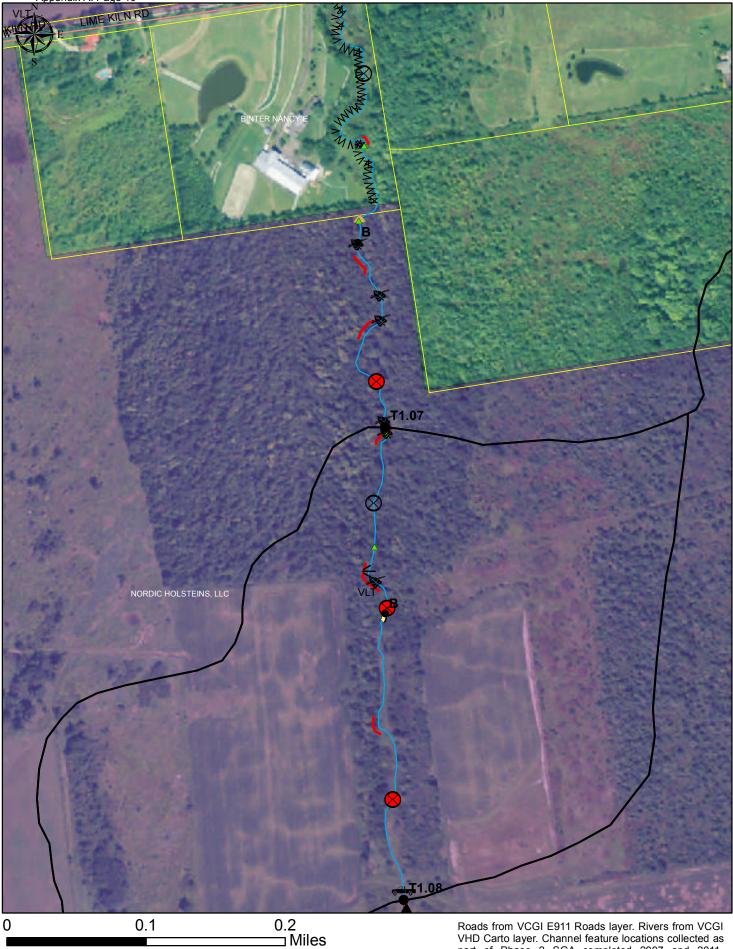
MILONE & MACBROOM®

Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

McCabe's Brook T1.05C

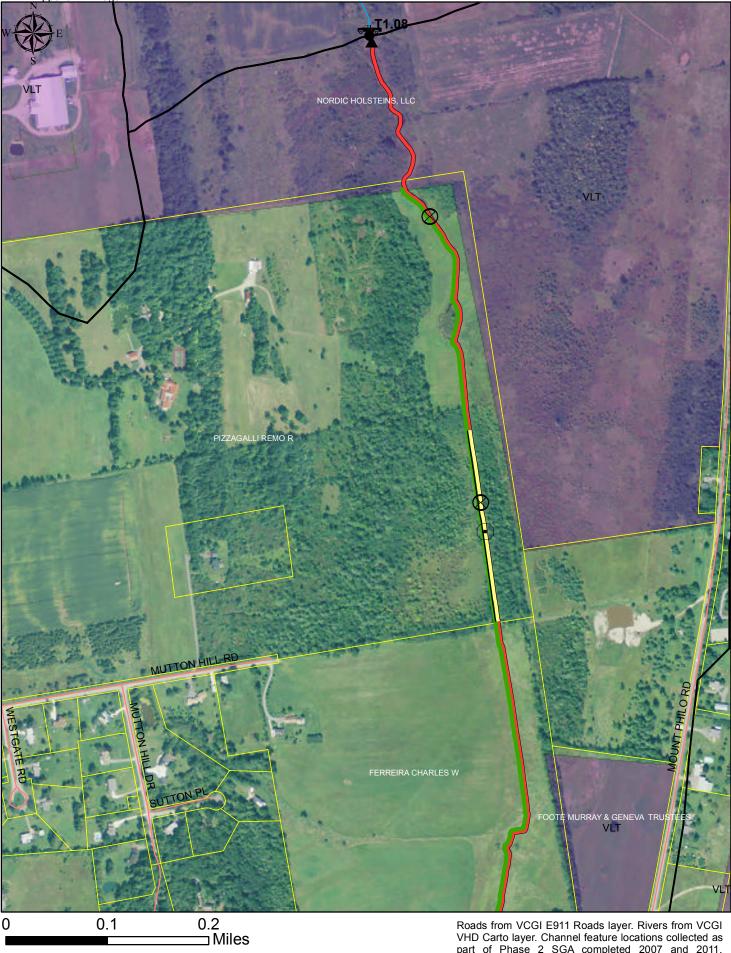
Engineering, Landscape Architecture and Environmental Science Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

McCabe's Brook T1.06



MILONE & MACBROOM®

Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.


McCabe's Brook T1.07

Appendix A: Page 10

Engineering, Landscape Architecture and Environmental Science Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

Appendix A Page (1 abe's Brook T1.08 Downstream Section

Engineering, Landscape Architecture and Environmental Science

MILONE & MACBROOM®

VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

Appendix A: Page M2CCabe's Brook T1.08 Middle Section

Engineering, Landscape Architecture and Environmental Science MILONE & MACBROOM®

Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

Appendix A: Page 13 CCabe's Brook T1.08 Upper Section

Engineering, Landscape Architecture and Environmental Science Roads from VCGI E911 Roads layer. Rivers from VCGI VHD Carto layer. Channel feature locations collected as part of Phase 2 SGA completed 2007 and 2011. Conserved lands from Vermont Land Trust. Map for planning purposes only. See legend on seperate sheet. Updated December 2011.

Agency of Natural Resouces

Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

McCabe's Brook Stream: T1.02-A Reach: Segment Length(ft): 2,688 Rain: Ňo

SGAT Version: 4.53 Organization: Lewis Creek Association Observers: J.Clark, M.Illick, A.Morgante Completion Date: 8/11/2011 Qualtiy Control Status - Consultant: Qualtiv Control Status - Staff: Why Not Assessed:

Passed Provisional impounded

Step 0 - Location: This segment is impounded by Lake Champlain and segmented. Original Phase 2 assessment did not segment.

Step 5 - Notes:

Step 7 - Narrative:

Step 1. Valley and Floodplain

1.1 Segmentation:	1.4 Adjacent Side	<u>Left</u>	<u>Right</u>	1.5 Valley Features
1.2 Alluvial Fan:	Hillside Slope:			Valley Width (ft):
1.3 Corridor Encroachments:	Continuous w/ Bank:			Width Determination:
Length (ft) One Height Both Height	Within 1 Bankfull W:			Confinement Type:
Berm:	Texture:			In Rock Gorge:
Road:		Humar	n Caused C	hange in Valley Width?:
Railroad:				

Imp. Path:

Dev.:

1.6 Grade Controls:

Stream Geomorphic Assessment								VT DE	C	
VERMC)NT	Age	ency of	Natural Re	souc	es			Vermont.g	-
Phase 2 Se	egment	Summary F	Report	Lapla	tte			Fel	bruary, 10 20 Page 2	
Stream:	McCabe	e's Brook	F	Reach:	T1.02-A	N N				
				Step 2. Stream	Channe	<u>el</u>				
2.1Bankfull Widtl	h (ft.):		2.11 Riff	e/Step Spacing:		:	2.13 Average Larges	t Particle on		
2.2 Max Depth (f	t.):		2.12 Sub	ostrate Composition	n		E	Bed:		
2.3 Mean Depth	(tf):		Bedro	ck:	%		I	Bar:		
2.4 Floodprone V	Vidth (ft.):		Bould	er:	%	:	2.14 Stream Type			
2.5 Aband. Flood	lpn (ft.):		Cobbl	e:	%		Stream Type:			
Human Elev Floo	odPln (ft.):		Coars	e Gravel:	%		Bed Material:			
2.6 Width/Depth	Ratio:	0.00	Fine C	Gravel:	%		Subclass Slope:			
2.7 Entrenchmer	nt Ratio:	0.00	Sand:		%		Bed Form:			
2.8 Incision Ratio) :	0.00	Silt ar	nd Smaller:	%		Field Measured Slo	ope:		
Human Elevated	Inc. Rat.:	0.00	Silt/Cl	ay Present:		:	2.15 Sub-reach Strea	ım Type		
2.9 Sinuosity:			Detritu	us:	%		Reference Stream	Туре:		
2.10 Riffles Type	:		# Large	Woody Debris:			Reference Bed Ma	terial:		
							Reference Subclas	s Slope:		
							Reference Bedforn	n:		
			5	Step 3. Ripariar	n Featur	<u>es</u>				
3.1 Stream Bank	S					Typical	Bank Slope:			
Bank Texture			Bank	Erosion	<u>Left</u>	<u>Right</u>	Near Bank Vegetat	tion Type <u>Left</u>	<u>R</u>	ight
Upper	<u>Left</u>	<u>Right</u>	Erosic	on Length (ft.):			Dominant:			
Material Type:			Erosic	on Height (ft.):			Sub-dominant:			
Consistency:			Revet	ment Type:			Bank Canopy			
Lower			Revet	ment Length:			Canopy %:			
Material Type:							Mid-Channel Ca	nopy:		
Consistency:										
	2 2 Dina	rian Buffer				221	Riparian Corridor			
Buffer Width	<u>3.2 Ripa</u>	Left	<u>Right</u>	Corridor Land		<u>3.3 </u> Left	Right	_	Left	<u>Right</u>
Dominant			rugin	Dominant		Lon	<u>rtigrit</u>	Mass Failur		<u>rtigitt</u>
Sub-Dominant	ł			Sub-dominant				Height		
W less than 2				(Legacy)		<u>Amount</u>	<u>Mean Hieght</u>	Gullies Nun	nber	
Buffer Vegitation				Failures		<u></u>	mourringill	Gullies Len		
Dominant				Gullies				2 4	5	
Sub-Dominant	t			Samoo						
Cas Bonnian	-									

\sim	.	Stream	Geom	orphic A	ssessment		VT DE	C
VERMO	ONT			al Resouce		Vermont.gov February, 10 2012		
Phase 2 S	Segment Su	ummary Report		Laplatte		Page3		
Stream:	McCabe's E	Brook	Reach:	T1.02-A				
		<u>S</u>	tep 4. Flo	w & Flow Modif	iers			
4.1 Springs / Se	eps:	4.5 Flow	Regulation	Туре	4.7 Stormwater In	puts N	one	
4.2 Adjacent We	etlands:	Flow F	Reg. Use:		Field Ditch:	R	oad Ditch:	
4.3 Flow Status	:	Impou	ndments:		Other:	Ti	ile Drain:	
4.4 # of Debris	Jams:	Impou	ndment Loc	.:	Overland Flow:	Ur	rb Strm Wtr Pi	pe:
		4.6 Up/D	own Strm fl	ow reg.:	4.9 # of Beaver D	ams:		
		(old) L	Jpstrm Flow	Affected Lengt	า (ft):			
4.8 Channel Cor	nstrictions:							
		Step 5.	Channel I	Bed and Planfor	m Changes			
5.1 Bar Types	Diagonal:	5.2 Other Features		Neck Cutoff:	5.4 Stream Ford or Animal Cro	ossing:		
Mid:	Delta:	Flood chutes:		Avulsion:	5.5 Straightening:	Ū		
Point:	Island:	5.3 Steep Riffles and	Head Cuts	Head Cuts:	Straightening Length (ft.):	0		
Side:	Braiding:	Steep Riffles:		Trib Rejuv.:	5.5 Dredging:			
		Step	6. Rapid	Habitat Assess	ment Data			
6.1 Epifaunal Su	ubstrate - Avl.:	•	ment Depos		Stream Gradiant Type		<u>Left</u>	<u>Right</u>
6.2 Pool Substra	ate:	6.5 Char	nnel Flow St	atus:	6.8 Bank Stability:			
6.3 Pool Variabi	ility:	6.6 Char	nnel Alteratio	on:	6.9 Bank Vegetation Protection	n		
Total Score:		6.7 Char	nnel Sinuosi	ty:	6.10 Riparian Veg. Zone Width	ו:		
Habitat Rating:								
Habitat Stream	Condition:							
		Sten 7 I	Ranid Ge	omorphic Asses	sment Data			
Confinement Ty	rpe			listoric				
7.1 Channel De		<u></u> <u>.</u>	<u> </u>		morphic Rating			
7.2 Channel Ag					nnel Evolution Model			
7.3 Widening Cl	-				nnel Evolution Stage			

7.3 Widening Channel7.4 Change in Planforml

Total Score

Geomorphic Rating Channel Evolution Model Channel Evolution Stage Geomorphic Condition Stream Sensitivity

Agency of Natural Resouces

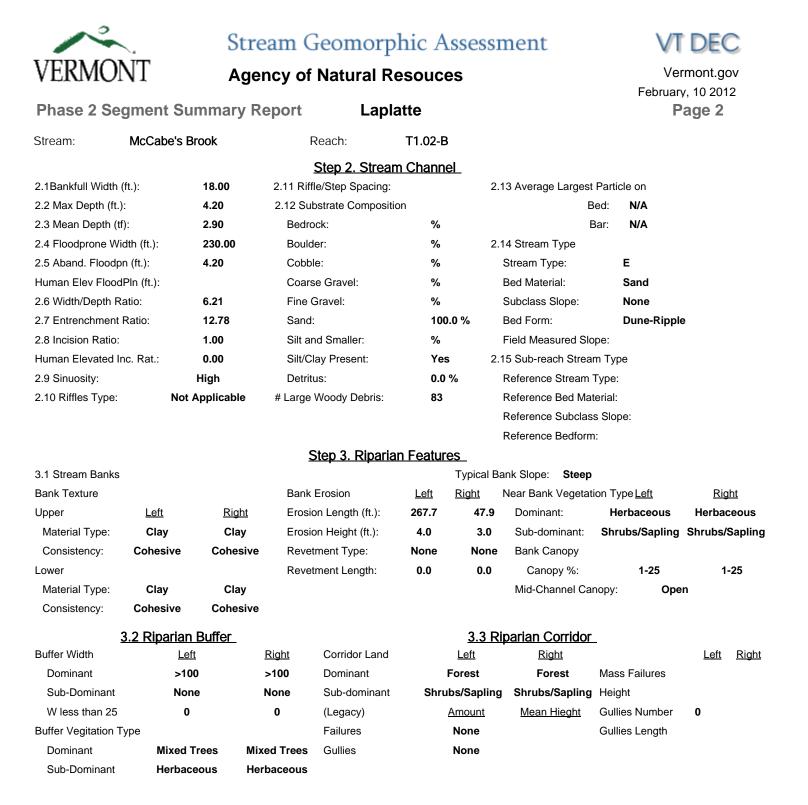
Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's Brook	SGAT Version:	4.53
Reach:	T1.02-B	Organization:	Lewis Creek Association
Segment Len	gth(ft): 3,546	Observers:	LG, TG
Rain:	No	Completion Date:	11/4/2006
		Quality Control Status	- Consultant: Passed
		Qualtiv Control Status	- Staff: Provisional

Step 0 - Location: north of Harbor Road. Downstream of Shelburne STP.

Step 5 - Notes: Assessment updated based on 8/11/11 field visit by MMI (j.clark) and LCA (m.illick and a. morgante). Segmented due to impoundment. RHA information collected based on updated RHA protocols.


Corridor is wetland, then outside is forest. A possible increase in flow from development may be causing some bed scour toward the upstream end.

Step 7 - Narrative: Planform, minor aggradation and widening. Herbaceous bank vegetation, whichappeared natural in the wetland setting. Appears to be in the D-stage model, having gone through IIc and now in III. Beaver activity downstream could also have played a role.

Step 1. Valley and Floodplain

1.1 Segment	ation: Flow S	tatus		1.4 Adjacent Side	<u>Left</u>	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Flat	Flat	Valley Width (ft):	230
1.3 Corridor	Encroachment	S:		Continuous w/ Bank:	Sometimes	Sometimes	Width Determination:	Estimated
Length (ft)	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Sometimes	Sometimes	Confinement Type:	VB
Berm:	0	0		Texture:	N.E.	N.E.	In Rock Gorge:	No
Road:	0	0			Hu	man Caused C	hange in Valley Width?	No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: No	ne						

n n n n n n n n n n n n n n n n n n n	Stream Geomorphic Assessment									
VERMONT	C Ager	ncy of Natur	ral Resouces	5		Vermont.gov				
Phase 2 Segm	ent Summary Re	eport	Laplatte		February, 1 Pag					
Stream: Mc	Cabe's Brook	Reach:	Т1.02-В							
		Step 4. Flo	w & Flow Modifie	rs						
4.1 Springs / Seeps:	Abundant	1.5 Flow Regulation			er Inputs None					
4.2 Adjacent Wetlands:	Abundant	Flow Reg. Use:		Field Ditch:	Road Ditch	:				
4.3 Flow Status:	Low	Impoundments:	None	Other:	Tile Drain:					
4.4 # of Debris Jams:	7	Impoundment Loc	.:	Overland Flow	w: Urb Strm W	/tr Pipe:				
	2	I.6 Up/Down Strm fl	ow reg.: None	4.9 # of Beave	er Dams:	0				
		(old) Upstrm Flow	Reg.:	Affected Le	ength (ft):	0				
4.8 Channel Constrictio	4.8 Channel Constrictions: None									
	S	tep 5. Channel I	Bed and Planform	n Changes						
5.1 Bar Types Diago		-	Neck Cutoff: 2	5.4 Stream Ford or Animal	Crossing:	lo				
Mid: 0 Delta	: 0 Flood chut	es: 0	Avulsion: 0	5.5 Straightening:	None					
Point: 1 Island	d: 0 5.3 Steep Rif	les and Head Cuts	Head Cuts: 0	Straightening Length (ft.	.): 0					
Side: 0 Braid	ing: 0 Steep Riffle	es: 0	Trib Rejuv.: No	5.5 Dredging:	None					
		Step 6. Rapid	Habitat Assessm	nent Data						
6.1 Epifaunal Substrate	e - Avl.:	6.4 Sediment Depos	sition:	Stream Gradiant Type	Let	it <u>Right</u>				
6.2 Pool Substrate:		6.5 Channel Flow St	tatus:	6.8 Bank Stability:						
6.3 Pool Variability:	(6.6 Channel Alteration	on:	6.9 Bank Vegetation Prote	ction					
Total Score:	0	6.7 Channel Sinuosi	ity:	6.10 Riparian Veg. Zone V	Vidth:					
Habitat Rating:	0.00									
Habitat Stream Condition	on:									
	S	ten 7 Ranid Ge	omorphic Assess	ment Data						
Confinement Type	Unconfined Score		Historic							
7.1 Channel Degradatio		None		orphic Rating	0.70					
7.2 Channel Aggradatio		None		nel Evolution Model	D					
7.3 Widening Channel	14	None	No Chan	nel Evolution Stage	ш					
7.4 Change in Planform	nl 9	None	No Geom	orphic Condition	Good					

56

Total Score

Stream Sensitivity

High

Agency of Natural Resouces

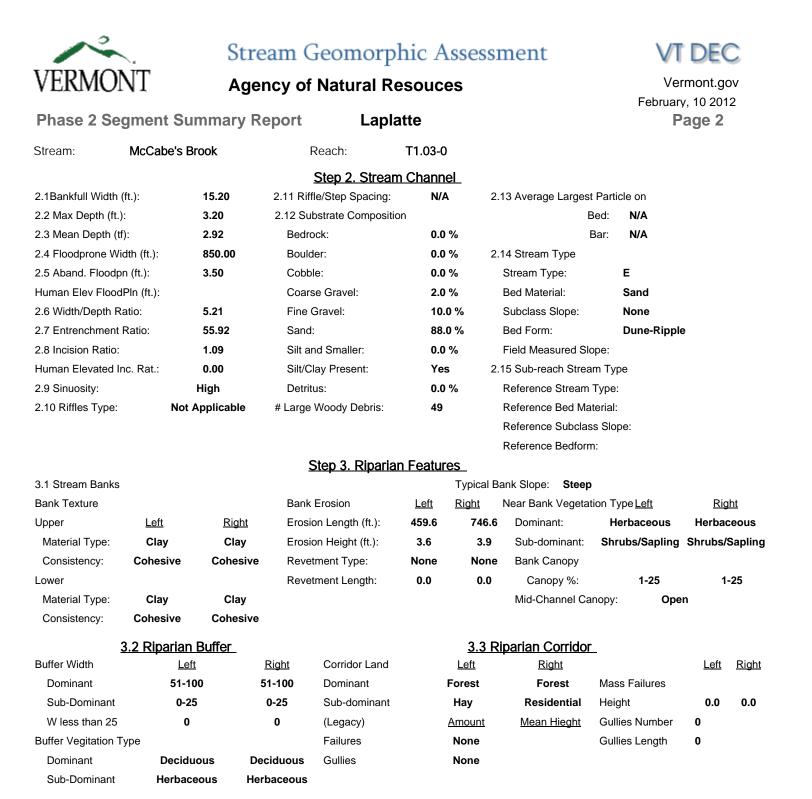
Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's Brook	SGAT Version:	4.53
Reach:	T1.03-0	Organization:	Lewis Creek Association
Segment Leng	th(ft): 4,766 /es	Observers: Completion Date: Qualtiy Control Status Qualtiy Control Status	Lisa 1/11/2005 Consultant: Passed

Step 0 - Location: South of Harbor Rd

Step 5 - Notes: Updated habitat information based on 7/27/2011 assessment by MMI (j.clark) with b. gagnon and m.illick.


sand/silt/clay banks, exposed clay in bed and on some lower banks. Erosion on outside bends, much bank slumping. Evidence of planform changes in reach as seen by outflanked beaver dams, old lodges on banks.

Step 7 - Narrative: Major planform and minor aggradation, widening. There is a terrace just 0.3 ft above bankfull. Given the past straightening, It appears that this reach has mainly moved laterally. So the D-stage seems warranted.

Step 1. Valley and Floodplain

1.1 Segmentation:	None	1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial Fan:	None	Hillside Slope:	Steep	Flat	Valley Width (ft):	459
1.3 Corridor Encroa	chments:	Continuous w/ Bank:	Never	Never	Width Determination:	Estimated
Length (ft) One	<u>Height Both Height</u>	Within 1 Bankfull W:	Never	Never	Confinement Type:	VB
Berm: 0	0	Texture:	N.E.	N.E.	In Rock Gorge:	No
Road: 0	0		Hu	man Caused	Change in Valley Width?	No
Railroad: 0	0					
Imp. Path: 0	0					
Dev.: 1,212	0					
1.6 Grade Controls:	None					

VERMONT	V	/T DEC /ermont.go					
Phase 2 Segment Summ	Agency of Nate	Laplati			Febru	uary, 10 2012 Page3	2
<u> </u>		•				· ugee	
Stream: McCabe's Brook	K Reach:	I	Г1.03-0				
	Step 4. F	low & Flow	v Modifiers	<u> </u>			
4.1 Springs / Seeps: Abundant	4.5 Flow Regulation		None		vater Inputs		
4.2 Adjacent Wetlands: Abundant	Flow Reg. Use:			Field Ditch	: 3 Roa	d Ditch:	2
4.3 Flow Status: Moderate	Impoundments:	r	None	Other:	1 Tile	Drain:	0
4.4 # of Debris Jams: 8	Impoundment L	oc.:		Overland F	low: 0 Urb	Strm Wtr Pipe	: 1
	4.6 Up/Down Strm	flow reg.:	None	4.9 # of Be	aver Dams:	3	
	(old) Upstrm Flo	0	None	Affected	Length (ft):	0	
		- 5			- 3 ()		
4.8 Channel Constrictions:							
	Photo	GPS	Channel	Floodprone			
Туре	Width Taken?	Taken?		n? Constriction?	Prob		
Bridge	8 Yes	No	Yes	Yes D	eposition Abov	e,Scour Bel	ow
	Step 5. Channe	el Bed and	Planform C	Changes			
5.1 Bar Types Diagonal: 0 5.2	2 Other Features	Neck Cu	utoff: 1	5.4 Stream Ford or Anir	mal Crossing:	No	
Mid: 2 Delta: 0	Flood chutes: 8	Avulsion	n: O	5.5 Straightening:	Straig	htening	
Point: 2 Island: 0 5.3	3 Steep Riffles and Head Cu	ts Head Cu	uts: 0	Straightening Length	(ft.): 790		
Side: 2 Braiding: 0	Steep Riffles: 0	Trib Reju	uv.: No	5.5 Dredging:	None		
	Step 6. Rap	id Habitat /	Assessmer	nt Data			
6.1 Epifaunal Substrate - Avl.:	7 6.4 Sediment Dep		7	Stream Gradiant Type		Left	<u>Right</u>
6.2 Pool Substrate:	13 6.5 Channel Flow	Status:	19	6.8 Bank Stability:		2	2
6.3 Pool Variability:	16 6.6 Channel Alter	ation:	14	6.9 Bank Vegetation Pro	otection	5	5
Total Score:	108 6.7 Channel Sinue	osity:	12	6.10 Riparian Veg. Zon		3	3
Habitat Rating:	0.54						
Habitat Stream Condition:	Fair						
	Step 7. Rapid C	•	<u>: Assessm</u>	ent Data			
	ed <u>Score</u> <u>STD</u>	<u>Historic</u>					
7.1 Channel Degradation	16 None	Νο		ohic Rating	0.64		
7.2 Channel Aggradation	12 None	Νο		Evolution Model	D		
7.3 Widening Channel	17	Νο		Evolution Stage	llc		
7.4 Change in Planforml	6	Νο	Geomorp	ohic Condition	Fair		
Total Score	51		Stream S	Sensitivity	Extreme		

Agency of Natural Resouces

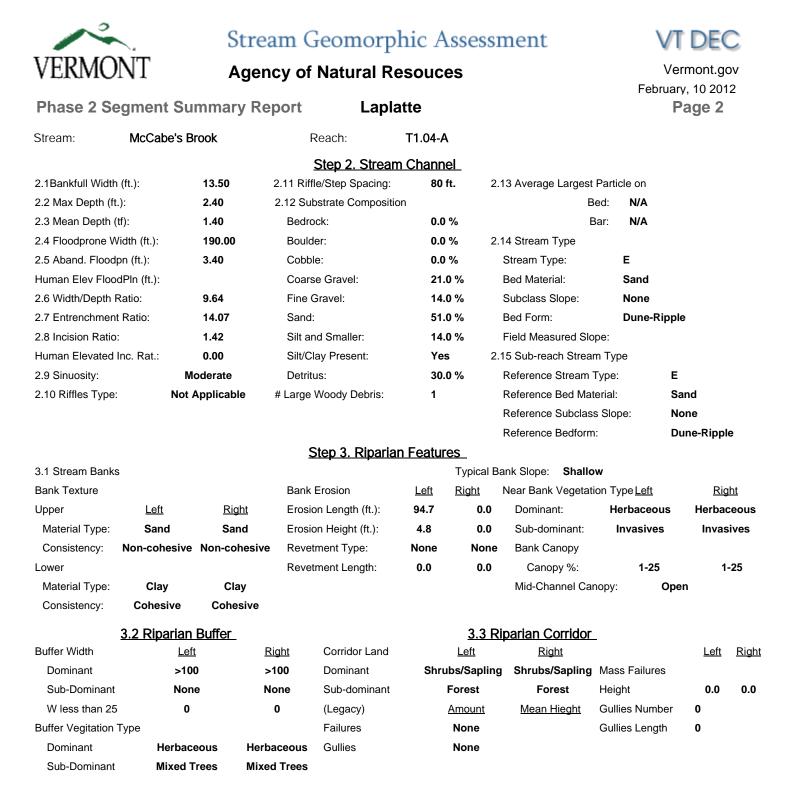
Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

Stream: Reach: Segment Lengt Rain: N	• •	SGAT Version: Organization: Observers: Completion Date: Qualtiy Control Status - Qualtiy Control Status -	
		Qualtiy Control Status -	· Statt: Provisional

Step 0 - Location: between Bostwick Rd and Harbor Rd. Previously not assessed due to beaver impoundment.

Step 5 - Notes: Beaver Dams affected this segment historically.


Step 7 - Narrative: Moderately Incised. Recent incision possibly due to a recent beaver dam breach occurring since 2007.

Step 1. Valley and Floodplain								
1.1 Segment	ation: Other F	Reason		1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Hilly	Hilly	Valley Width (ft):	273
1.3 Corridor Encroachments:		Continuous w/ Bank:	Never	Never	Width Determination:	Measured		
Length (ft)	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Never	Never	Confinement Type:	VB
Berm:	0	0		Texture:	N.E.	N.E.	In Rock Gorge:	No
Road:	0	0			Hu	man Caused	Change in Valley Width?	: No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: No	ne						

VT DEC • 103 South Main Street • Waterbury, VT 05671

VT DEC

~	essment	VT DEC							
VERMONT		Vermont.gov							
Phase 2 Segmer	February, 10 2012 Page3								
Stream: McCa	abe's Brook Read	ch: T1.04-A							
Step 4. Flow & Flow Modifiers									
4.1 Springs / Seeps:	Abundant 4.5 Flow Regul	lation Type None	4.7 Stormwater Inp	outs None					
4.2 Adjacent Wetlands:	Abundant Flow Reg. U	se:	Field Ditch:	Road Ditch:					
4.3 Flow Status:	_ow Impoundmer	nts: None	Other:	Tile Drain:					
4.4 # of Debris Jams: 0) Impoundmer	nt Loc.:	Overland Flow:	Urb Strm Wtr Pipe:					
	4.6 Up/Down S	Strm flow reg.: None	4.9 # of Beaver Da	ms: 3					
	(old) Upstrm	Flow Reg.: None	Affected Length	(ft): 0					
4.8 Channel Constrictions: None Step 5. Channel Bed and Planform Changes									
5.1 Bar Types Diagona	-	Neck Cutoff: 0	5.4 Stream Ford or Animal Cros	ssina: No					
Mid: 1 Delta:	0 Flood chutes: 0	Avulsion: 0	5.5 Straightening:	None					
Point: 4 Island:	0 5.3 Steep Riffles and Head		Straightening Length (ft.):	0					
Side: 7 Braiding		Trib Rejuv.: No	5.5 Dredging:	None					
		apid Habitat Assessme							
6.1 Epifaunal Substrate - A	•	•	Stream Gradiant Type	Left Right					
6.2 Pool Substrate:	6.5 Channel Fl	ow Status:	6.8 Bank Stability:						
6.3 Pool Variability:	6.6 Channel Al	Iteration:	6.9 Bank Vegetation Protection						
Total Score:	0 6.7 Channel Si	inuosity:	6.10 Riparian Veg. Zone Width:						
Habitat Rating:	0.00								
Habitat Stream Condition:									
			and Data						
Confinement Torre		d Geomorphic Assessm	ent Data						
Confinement Type	Unconfined <u>Score</u> <u>STD</u>	<u>Historic</u>		~					
7.1 Channel Degradation	11 None		phic Rating 0.6	D					
7.2 Channel Aggradation	14 None		Evolution Model F						
7.3 Widening Channel	11 None	No Channe	Evolution Stage						

7.4 Change in Planforml

Total Score

17

53

None

No

Geomorphic Condition

Stream Sensitivity

Good High

Agency of Natural Resouces

Vermont.gov February, 10 2012

VT DEC

Page 1

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's B	rook	SGAT Version:	4.53	
Reach:	T1.04-B		Organization:	Lewis Creek Associati	on
Segment Lengtl	h(ft): 2,3	64	Observers:	LG	
Rain: No	כ		Completion Date:	11/27/2006	
			Qualtiy Control Status -	Consultant:	Passed
			Qualtiv Control Status -	Staff:	Provisional

Step 0 - Location: North of the railroad crossing which is north of Bostwick Rd

Step 5 - Notes: Updated habitat information based on 7/27/2011 stream walk using updated RHA protocols by MMI (j.clark) with b.gagnon. Portions of segment were dry. Segment T1.04B began just downstream of a large, old railroad bridge. The bridge appeared to be causing increased velocities and incision downstream. Segment T1.04B had much bank erosion and signs of planform adjustment and aggradation such as flood chutes, diagonal bars, and multiple sediment deposits. Bank vegetation was herbaceous, as was corridor vegetation, with some shrubs/saplings and forested areas. One bridge constricted the bankfull width and had deposition upstream and scour downstream. The segment appeared to be slightly incised, but not entrenched.

Step 7 - Narrative: Extreme planform. Some current incision and aggradation.

Step 1. Valley and Floodplain

1.1 Segment	ation: Other	Reasor	ı	1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Hilly	Hilly	Valley Width (ft):	326
1.3 Corridor	Encroachmer	ts:		Continuous w/ Bank:	Sometimes	Sometimes	Width Determination:	Estimated
Length (ft)	One Height	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Sometimes	Sometimes	Confinement Type:	VB
Berm:	0	0		Texture:	N.E.	N.E.	In Rock Gorge:	No
Road:	0	0			Hu	man Caused C	hange in Valley Width?	°: No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: N	one						

Vermont.gov

Agency of Natural Resouces

124010		, .goii						Febru	ary, 10 2012
Phase 2 Se	egment Su	immary Re	port Laplat	te					Page 2
Stream:	McCabe's I	Brook	Reach:	Т1.04-В	5				
			Step 2. Stream	Chann	el				
2.1Bankfull Widtl	h (ft.):	18.40	2.11 Riffle/Step Spacing:	100) ft.	2.13 Average Large	est Parl	ticle on	
2.2 Max Depth (f	ít.):	1.40	2.12 Substrate Composition				Bed:	4	inches
2.3 Mean Depth	(tf):	1.00	Bedrock:	0.0	%		Bar:	1	inches
2.4 Floodprone V	Nidth (ft.):	49.10	Boulder:	0.0	%	2.14 Stream Type			
2.5 Aband. Flood	dpn (ft.):	1.80	Cobble:	1.0	%	Stream Type:		С	
Human Elev Floo	odPln (ft.):		Coarse Gravel:	42.	0 %	Bed Material:		Gravel	
2.6 Width/Depth	Ratio:	18.40	Fine Gravel:	19.	0 %	Subclass Slope:		None	
2.7 Entrenchmer	nt Ratio:	2.67	Sand:	38.	0 %	Bed Form:		Riffle-Po	ol
2.8 Incision Ratio	D:	1.29	Silt and Smaller:	0.0	%	Field Measured S	Slope:		
Human Elevated	Inc. Rat.:	0.00	Silt/Clay Present:	Yes	6	2.15 Sub-reach Stre	eam Ty	/pe	
2.9 Sinuosity:	Ν	loderate	Detritus:	0.0	%	Reference Stream	m Type	e:	
2.10 Riffles Type	e: C	omplete	# Large Woody Debris:	13		Reference Bed N	laterial	l:	
						Reference Subcl	ass Slo	ope:	
						Reference Bedfo	rm:		
			Step 3. Riparian	Featur	<u>es</u>				
3.1 Stream Bank	S				Typical	Bank Slope: Stee	∋p		
Bank Texture			Bank Erosion	<u>Left</u>	<u>Right</u>	Near Bank Vege	tation T	Гуре <u>Left</u>	<u>Right</u>
Upper	Left	<u>Right</u>	Erosion Length (ft.):	928.5	413	.1 Dominant:	ŀ	Herbaceous	B Herbaceous
Material Type:	Mix	Mix	Erosion Height (ft.):	3.3	2.8	3 Sub-dominant	: Sh	rubs/Sapli	ng Shrubs/Sapling
Consistency:	Non-cohesive	Non-cohesive	Revetment Type:	None	Nor	e Bank Canopy			

Consistency:	Non-cohesive	Non-cohesive	Revetment Type:
Lower			Revetment Length:
Material Type:	Mix	Mix	
Consistency:	Non-cohesive	Non-cohesive	

3.2 Riparian Buffer

<u>3.2 F</u>	Riparian Buffer	_		<u>3.3 Rip</u>	arian Corridor	_		
Buffer Width	Left	<u>Right</u>	Corridor Land	Left	<u>Right</u>		<u>Left</u>	<u>Right</u>
Dominant	>100	>100	Dominant	Shrubs/Sapling	Shrubs/Sapling	Mass Failures		
Sub-Dominant	None	None	Sub-dominant	Нау	Forest	Height	20.0	20.0
W less than 25	0	0	(Legacy)	<u>Amount</u>	<u>Mean Hieght</u>	Gullies Number	0	
Buffer Vegitation Type			Failures	One	20.0	Gullies Length	0	
Dominant	Herbaceous	Herbaceous	Gullies	None				
Sub-Dominant	Mixed Trees	Mixed Trees						

0.0

0.0

Canopy %:

Mid-Channel Canopy:

26-50

Open

26-50

~	Stream Geo	morph	ic Ass	essment	\	/T DE	С
VERMONT	Agency of Nat	ural Res	ouces		,	Vermont.	gov
					Febru	uary, 10 2	
Phase 2 Segment Sum	imary Report	Laplat	te			Page3	
Stream: McCabe's Bro	ok Reach	n: T	Г1.04-В				
	Step 4.	Flow & Flow	v Modifiers	<u>.</u>			
4.1 Springs / Seeps: Minimal	4.5 Flow Regulat		None		ater Inputs Nor	e	
4.2 Adjacent Wetlands: Abundant	Flow Reg. Use	e:		Field Ditch:	Roa	d Ditch:	
4.3 Flow Status: Moderate	Impoundments	s: N	None	Other:	Tile	Drain:	
4.4 # of Debris Jams: 2	Impoundment	Loc.:		Overland FI	ow: Urb	Strm Wtr P	'ipe:
	4.6 Up/Down Str	m flow reg.:	None	4.9 # of Bea	aver Dams:		0
	, (old) Upstrm F	-	None	Affected	Length (ft):		0
		0			0 ()		
4.8 Channel Constrictions:							
	Photo	GPS	Channel	Floodprone			
Туре	Width Taken?	Taken?		n? Constriction?	1100	lems	
Bridge	17 Yes	No	Yes	Yes De	eposition Abov	/e,Scour i	Below
	Step 5. Chann	el Bed and	Planform (Changes			
5.1 Bar Types Diagonal: 7	5.2 Other Features	Neck Cu	itoff: 1	5.4 Stream Ford or Anim	al Crossing:	No	
Mid: 2 Delta: 0	Flood chutes: 8	Avulsion	n: O	5.5 Straightening:	Straig	htening	
Point: 10 Island: 0 §	5.3 Steep Riffles and Head C	uts Head Cu	uts: 0	Straightening Length	(ft.): 257		
Side: 2 Braiding: 0	Steep Riffles: 1	Trib Reju	uv.: No	5.5 Dredging:	None		
	Step 6. Ra	pid Habitat /	Assessme	nt Data			
6.1 Epifaunal Substrate - Avl.:	8 6.4 Sediment De	position:	9	Stream Gradiant Type		<u>Left</u>	<u>Right</u>
6.2 Pool Substrate:	13 6.5 Channel Flow	w Status:	10	6.8 Bank Stability:		3	3
6.3 Pool Variability:	19 6.6 Channel Alte	ration:	19	6.9 Bank Vegetation Pro	tection	6	6
Total Score:	128 6.7 Channel Sinu	uosity:	16	6.10 Riparian Veg. Zone	Width:	8	8
Habitat Rating:	0.64						
Habitat Stream Condition:	Fair						
		•					
	Step 7. Rapid	•	: Assessm	ent Data			
	ined <u>Score</u> <u>STD</u>	<u>Historic</u>	0		0.40		
7.1 Channel Degradation	11 None	No		ohic Rating	0.49 F		
7.2 Channel Aggradation	13 None	No		Evolution Model	F		
7.3 Widening Channel	12	No		Evolution Stage	II 		
7.4 Change in Planforml	3	No		ohic Condition	Fair		
Total Score	39		Stream S	Sensitivity	Very High		

Agency of Natural Resouces

Vermont.gov February, 10 2012

Page 1

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's Brook	SGAT Version:	4.53
Reach:	T1.05-A	Organization:	Lewis Creek Association
Segment Length		Observers:	LG
Rain: Ye		Completion Date:	5/10/2007
	-	Qualtiy Control Status - Qualtiy Control Status -	

Step 0 - Location: north of Route 7 crossing.

Step 5 - Notes: Updated based on 7/27/2011 stream walk by MMI (j.clark) with b. gagnon to update RHA data. Segment T1.05A had several bedrock ledges acting as grade controls, providing bed stability. The segment appeared to have incised from a former terrace, resulting in a stream type departure (C to F). Bed substrate was gravel. Current adjustment processes appeared to be widening and planform. Incision at headcut has been stopped by the arch bottom at the railroad crossing, but if allowed to migrate I think it would. Aggradation and incision do not typically occur in the same reach, but here they are. Historic incision (and current ds of railroad) have been stopped when the bed degraded down to grade control. Multiple gravel bars signaled minor aggradation. And major aggradation upstream of road crossing constrictions and bedrock grade controls. Lateral migration and mass failures are occurring at constrictions and incision can not occur due to bedrock grade control.

Close to the channel was open with herbaceous vegetation and invasive honeysuckle. Further out in the corridor was more forested with deciduous trees and shrubs/saplings.

Step 7 - Narrative: Widening and planform following historical degradation. Poor condition due to STD.

Step 1. Valley and Floodplain

1.1 Segmentation: Planform and Scope			1.4 Adjacent Side	<u>Left</u>	<u>Right</u>	ight 1.5 Valley Features			
1.2 Alluvial Fan: None			Hillside Slope:	Hilly	Steep	Valley Width (ft):	146		
1.3 Corridor Encroachments:			Continuous w/ Bank:	Sometimes	Sometimes	Width Determination:	Estimated		
Length (ft)	<u>One</u>	<u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Sometimes	Sometimes	Confinement Type:	BD
Berm:	0		0		Texture:	N.E.	N.E.	In Rock Gorge:	No
Road:	0		0			Hu	man Caused C	hange in Valley Width?	: No
Railroad:	0		0						
Imp. Path:	0		0						
Dev.:	0		0						

1.6 Grade Controls:

		Total	Total Height	Photo	GPS
Туре	Location	Height	Above Water	Taken?	Taken?
Ledge	Mid-Segment	5.0	1.0		
Ledge	Mid-Segment	4.0	1.0		
Ledge	Mid-Segment	1.0	1.0		
Ledge	Mid-Segment	3.0	1.0		
Ledge	Mid-Segment	3.0	1.0		

2.1Bankfull Width (ft.):

2.2 Max Depth (ft.):

2.3 Mean Depth (tf):

2.4 Floodprone Width (ft.):

2.5 Aband. Floodpn (ft.):

Human Elev FloodPln (ft.):

2.6 Width/Depth Ratio:

2.8 Incision Ratio:

2.10 Riffles Type:

2.9 Sinuosity:

2.7 Entrenchment Ratio:

Human Elevated Inc. Rat .:

Stream:

Stream Geomorphic Assessment

Agency of Natural Resouces

Fine Gravel:

Silt and Smaller:

Silt/Clay Present:

Large Woody Debris:

Sand:

Detritus:

Vermont.gov February, 10 2012 **Phase 2 Segment Summary Report** Laplatte Page 2 McCabe's Brook Reach: T1.05-A Step 2. Stream Channel 22.70 2.11 Riffle/Step Spacing: 100 ft. 2.13 Average Largest Particle on 1.50 2.12 Substrate Composition Bed: 9 inches 0.81 Bedrock: 0.0 % Bar: 3 inches 30.40 Boulder: 0.0 % 2.14 Stream Type 2.90 Cobble: 12.0 % F Stream Type: Coarse Gravel: 33.0 % **Bed Material:** Gravel

Subclass Slope:

Field Measured Slope:

2.15 Sub-reach Stream Type

Reference Stream Type:

Reference Bed Material: Reference Subclass Slope: Reference Bedform:

Bed Form:

3.3 Riparian Corridor

None

Riffle-Pool

12.0 %

43.0 %

0.0 %

0.0 %

No

6

Step 3. Riparian Features

3.1 Stream Banks					Typical Bank Slope: Undercut				
Bank Texture			Bank Erosion	Left	<u>Right</u> N	lear Bank Vegetation	Type <u>Left</u>	<u>Right</u>	
Upper	Left	<u>Right</u>	Erosion Length (ft.):	1,225.3	683.4	Dominant:	Herbaceous	Herbaceous	
Material Type:	Clay	Clay	Erosion Height (ft.):	3.0	3.1	Sub-dominant:	Invasives	Invasives	
Consistency:	Cohesive	Cohesive	Revetment Type:	Rip-Rap	Multiple	Bank Canopy			
Lower			Revetment Length:	98.0	314.3	Canopy %:	26-50	26-50	
Material Type:	Mix	Mix				Mid-Channel Canop	oy: Oper	า	

Consistency: Non-cohesive Non-cohesive

28.02

1.34

1.93

0.00

Moderate

Sedimented

3.2 Riparian Buffer

Buffer Width	<u>Left</u>	<u>Right</u>	Corridor Land	Left	<u>Right</u>		<u>Left</u>	<u>Right</u>
Dominant	>100	>100	Dominant	Forest	Forest	Mass Failures		
Sub-Dominant	None	None	Sub-dominant	Shrubs/Sapling	Shrubs/Sapling	Height	20.0	20.0
W less than 25	0	0	(Legacy)	<u>Amount</u>	<u>Mean Hieght</u>	Gullies Number	0	
Buffer Vegitation Type			Failures	Multiple	19.0	Gullies Length	0	
Dominant	Deciduous	Deciduous	Gullies	None				
Sub-Dominant	Invasives	Invasives						

Stream Geomorphic AssessmentVERMONTAgency of Natural Resouces					VT DEC Vermont.gov		
	Agency of Nati		uces			ary, 10 20	-
Phase 2 Segment Sumn	nary Report	Laplatte				Page3	
Stream: McCabe's Brook	Reach:	T1.	05-A				
11 Optimum (Optimum)	•	Flow & Flow N			a la su da Ni a su a		
4.1 Springs / Seeps: Minimal	4.5 Flow Regulation		ne	4.7 Stormwate			
4.2 Adjacent Wetlands: Minimal 4.3 Flow Status: Moderate	Flow Reg. Use:			Field Ditch:		Ditch:	
	Impoundments: Impoundment L		ne	Other:	Tile D	trm Wtr Pi	ne:
4.4 # of Debris Jams: 1			lana	Overland Flow 4.9 # of Beave			
	4.6 Up/Down Strm	-	None None				0
	(old) Upstrm Flo	ow Reg.: r	None	Affected Ler	igin (ii):		0
4.8 Channel Constrictions:							
	Photo	GPS	Channel	Floodprone			
Туре	Width Taken?		onstriction?		Proble		
Instream Culvert	7.4 Yes	No	Yes		osition Above		
Instream Culvert	11.9 Yes	Yes	Yes	Yes Deposit	tion Above,D	epositior	n Below
	Step 5. Channe	el Bed and Pla	anform Ch	anges			
5.1 Bar Types Diagonal: 2 5.2	Other Features	Neck Cutof		5.4 Stream Ford or Animal	Crossing:	No	
Mid: 1 Delta: 0	Flood chutes: 6	Avulsion:	2 5	5.5 Straightening:	Straight	tening	
Point: 10 Island: 0 5.3	Steep Riffles and Head Cu	ts Head Cuts:	: 1	Straightening Length (ft.)	: 644		
Side: 4 Braiding: 0	Steep Riffles: 2	Trib Rejuv.	: No 5	5.5 Dredging:	None		
	Step 6. Rap	id Habitat As	sessment	<u>Data</u>			
6.1 Epifaunal Substrate - Avl.:	11 6.4 Sediment Dep	oosition:	7 5	Stream Gradiant Type		<u>Left</u>	<u>Right</u>
6.2 Pool Substrate:	6 6.5 Channel Flow	Status:	7 6	5.8 Bank Stability:		3	3
6.3 Pool Variability:	18 6.6 Channel Alter	ation:	15 6	6.9 Bank Vegetation Protect	ction	7	7
Total Score:	121 6.7 Channel Sinue	osity:	18 6	6.10 Riparian Veg. Zone W	idth:	10	9
Habitat Rating:	0.61						
Habitat Stream Condition:	Fair						
	Step 7. Rapid C	Seomorphic A	ssessmer	nt Data			
Confinement Type Unconfine		Historic					
7.1 Channel Degradation	5 C to F	Yes	Geomorphi	ic Rating	0.44		
7.2 Channel Aggradation	12 None	No		volution Model	F		
7.3 Widening Channel	8	No	Channel Ev	volution Stage	ш		
7.4 Change in Planforml	10	No	Geomorphi	c Condition	Poor		
Total Score	35		Stream Sei		Extreme		

Agency of Natural Resouces

Vermont.gov February, 10 2012

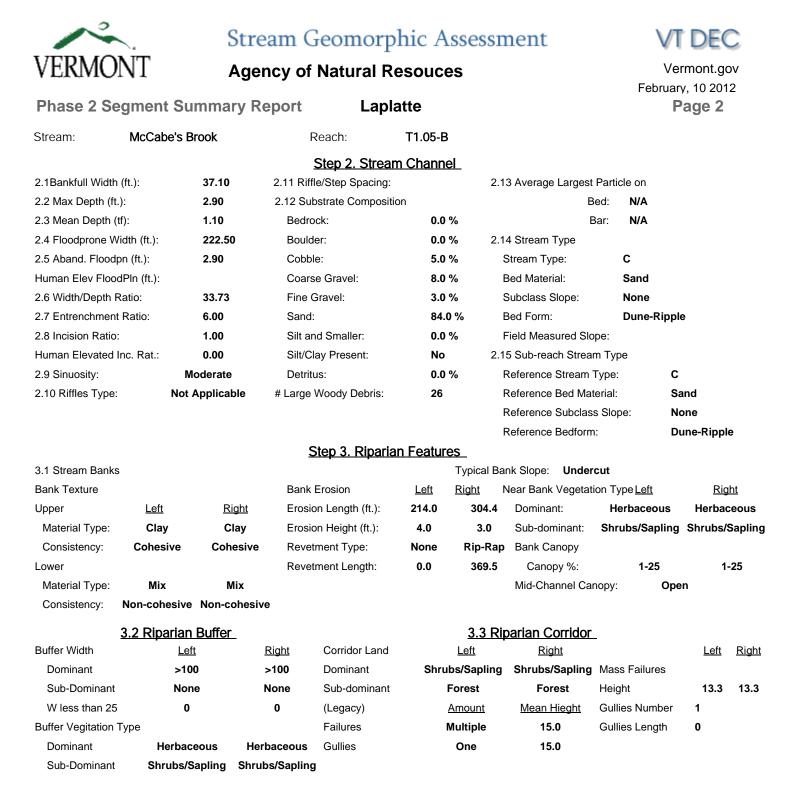
Page 1

Phase 2 Segment Summary Report Laplatte

Stream: Reach: Segment Length Rain: No	McCabe's Brook T1.05-B (ft): 5,939	SGAT Version: Organization: Observers: Completion Date: Quality Control Status -	
		Qualtiy Control Status	

Step 0 - Location: From just north of Rt 7 south.

Step 5 - Notes: Updated based on 7/25/2011 stream walk by MMI (j.clark) to update RHA with new protocols. Segment T1.05B had a shallower slope, smaller substrate size and in a broad valley setting. The segment appeared to be "in regime," being a C Dune-Ripple stream type and in "good" condition. Minor planform and widening processes were observed, and could be related to the lack of woody bank vegetation.


Bank and buffer vegetation was herbaceous with some shrubs/saplings. Some areas of forested corridor were present in the upstream portion of the segment. RHA condition was "good" but lacking sufficient mix of substrates and large pools. A cattle watering area had been fenced out in the channel and had turned into a large pool. For water quality purposes, cattle should be fenced out of the channel and alternative watering methods used.

Some bank planting projects were apparent in the downstream half of the segment, although not all of the trees had survived. Additional plantings could be installed.

Step 7 - Narrative: Minor Planfrom and widening likely related to the non woody bank vegetation. Stage IIc seems to describe what is going on here, while clay was not observed, the banks appear to be less resistant than the bed to erosion.

Step 1. Valley and Floodplain

1.1 Segment	ation: Planfo	rm and	Scope	1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Hilly	Hilly	Valley Width (ft):	225
1.3 Corridor	Encroachmen	ts:		Continuous w/ Bank:	Sometimes	Sometimes	Width Determination:	Measured
Length (ft)	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Sometimes	Sometimes	Confinement Type:	BD
Berm:	0	0		Texture:	N.E.	N.E.	In Rock Gorge:	No
Road:	0	0			Hu	man Caused C	hange in Valley Width?	No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: No	one						

VERMONT	Stream Geor Agency of Natu	-		essment	Ň	VT DE				
			souces		Feb	ruary, 10 20)12			
Phase 2 Segment Summ	nary Report	Laplat	te			Page3				
Stream: McCabe's Brook	k Reach:	-	T1.05-B							
Step 4. Flow & Flow Modifiers										
4.1 Springs / Seeps: Minimal	4.5 Flow Regulatio		None	4.7 Stormwater	Inputs					
4.2 Adjacent Wetlands: Abundant	Flow Reg. Use:			Field Ditch:	0 Ro	ad Ditch:	0			
4.3 Flow Status: Moderate	Impoundments:		None	Other:	0 Tile	e Drain:	0			
4.4 # of Debris Jams: 0	Impoundment Lo	DC.:		Overland Flow:	0 Urt	o Strm Wtr Pi	pe: 0			
	4.6 Up/Down Strm	flow reg .:	None	4.9 # of Beaver	Dams:		5			
	(old) Upstrm Flo	-	None	Affected Leng	gth (ft):	39	90			
4.8 Channel Constrictions:		0.50								
Turo	Photo Width Taken?	GPS	Channel	Floodprone ? Constriction?	Dro	blems				
Type Instream Culvert	9.8 Yes	Taken?	Yes	Yes	-	r Below				
Instream Culvert	13.5 Yes	No	Yes	Yes		r Below				
instream Colvert	10.0 103	NO	163	165	5000	Delow				
Step 5. Channel Bed and Planform Changes										
	Step 5. Channel	Bed and	Planform C	Changes						
5.1 Bar Types Diagonal: 1 5.2	Step 5. Channel 2 Other Features	I Bed and Neck Ci		Changes 5.4 Stream Ford or Animal C	Crossing:	Yes				
	•		utoff: 0	•	0	Yes ghtening				
Mid: 3 Delta: 0	2 Other Features	Neck Co Avulsior	utoff: 0 n: 0	5.4 Stream Ford or Animal C	Strai	ghtening				
Mid: 3 Delta: 0 Point: 3 Island: 0 5.3	2 Other Features Flood chutes: 5	Neck Co Avulsior	utoff: 0 n: 0 uts: 0	5.4 Stream Ford or Animal C 5.5 Straightening:	Strai	ghtening 2				
Mid: 3 Delta: 0 Point: 3 Island: 0 5.3	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts	Neck Co Avulsior s Head C Trib Rej	utoff: 0 n: 0 uts: 0 juv.: No	5.4 Stream Ford or Animal C5.5 Straightening: Straightening Length (ft.):5.5 Dredging:	Straig 1,532	ghtening 2				
Mid: 3 Delta: 0 Point: 3 Island: 0 5.3	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1	Neck Cu Avulsior s Head C Trib Rej d Habitat	utoff: 0 n: 0 uts: 0 juv.: No	5.4 Stream Ford or Animal C5.5 Straightening: Straightening Length (ft.):5.5 Dredging:	Straig 1,532	ghtening 2	Right			
Mid: 3 Delta: 0 Point: 3 Island: 0 5.3 Side: 0 Braiding: 0	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 <u>Step 6. Rapl</u>	Neck Co Avulsior s Head C Trib Rej <u>d Habitat</u> osition:	utoff: 0 n: 0 uts: 0 juv.: No Assessmer	 5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: 1 Data 	Straig 1,532	ghtening 2 9	<u>Right</u> 8			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 <u>Step 6. Rapl</u> 7 6.4 Sediment Depo	Neck Cu Avulsior s Head C Trib Rej <u>d Habitat</u> osition: Status:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16	 5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: <u>ht Data</u> Stream Gradiant Type 	Straig 1,532 None	ghtening 2 e Left				
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 <u>Step 6. Rapi</u> 7 6.4 Sediment Depo 14 6.5 Channel Flow 5	Neck Cu Avulsior s Head C Trib Rej <u>d Habitat</u> osition: Status: ation:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18	5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: ht Data Stream Gradiant Type 6.8 Bank Stability:	Straig 1,532 None	ghtening 2 3 <u>Left</u> 8	8			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:6.3 Pool Variability:	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 <u>Step 6. Rapi</u> 7 6.4 Sediment Dep 14 6.5 Channel Flow 8 6.6 Channel Altera	Neck Cu Avulsior s Head C Trib Rej <u>d Habitat</u> osition: Status: ation:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18 17	 5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: <u>ht Data</u> Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 	Straig 1,532 None	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:0	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 Step 6. Rapi 7 6.4 Sediment Depo 14 6.5 Channel Flow 3 8 6.6 Channel Altera 134 6.7 Channel Sinuo	Neck Cu Avulsior s Head C Trib Rej <u>d Habitat</u> osition: Status: ation:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18 17	 5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: <u>ht Data</u> Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 	Straig 1,532 None	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:6.3 Pool Variability:Total Score:Habitat Rating:	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 <u>Step 6. Rapi</u> 7 6.4 Sediment Depo 14 6.5 Channel Flow 3 8 6.6 Channel Altera 134 6.7 Channel Sinuo 0.67	Neck Co Avulsion s Head C Trib Rej d Habitat osition: Status: ation: osity:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18 17 8	 5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: <u>It Data</u> Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 6.10 Riparian Veg. Zone Wid 	Straig 1,532 None	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:6.3 Pool Variability:Total Score:Habitat Rating:Habitat Stream Condition:	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 <u>Step 6. Rapi</u> 7 6.4 Sediment Depo 14 6.5 Channel Flow 3 8 6.6 Channel Altera 134 6.7 Channel Sinuo 0.67 Good	Neck Co Avulsion s Head C Trib Rej d Habitat osition: Status: ation: osity:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18 17 8	 5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: <u>It Data</u> Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 6.10 Riparian Veg. Zone Wid 	Straig 1,532 None	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:6.3 Pool Variability:Total Score:Habitat Rating:Habitat Stream Condition:	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 Step 6. Rapi 7 6.4 Sediment Dep 14 6.5 Channel Flow 8 6.6 Channel Altera 134 6.7 Channel Sinuo 0.67 Good	Neck Co Avulsion s Head C Trib Rej d Habitat osition: Status: ation: bsity:	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18 17 8 <u>c Assessme</u>	5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: <u>ht Data</u> Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 6.10 Riparian Veg. Zone Wid	Straig 1,532 None	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:6.3 Pool Variability:Total Score:Habitat Rating:Habitat Stream Condition:Confinement Type	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 Step 6. Rapi 7 6.4 Sediment Depo 14 6.5 Channel Flow 3 8 6.6 Channel Altera 134 6.7 Channel Sinuo 0.67 Good Step 7. Rapid G ed Score STD	Neck Co Avulsion s Head C Trib Rej d Habitat osition: Status: ation: osity: Peomorphic Historic	utoff: 0 n: 0 uts: 0 <u>Assessmer</u> 16 18 17 8 <u>C Assessme</u> Geomorp	5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: nt Data Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 6.10 Riparian Veg. Zone Wid	Straig 1,532 None ion dth:	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:06.1 Epifaunal Substrate - Avl.:6.2 Pool Substrate:6.3 Pool Variability:Total Score:Habitat Rating:Habitat Stream Condition:Confinement TypeUnconfine7.1 Channel Degradation	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 Steep 6. Rapi 7 6.4 Sediment Depo 14 6.5 Channel Flow 3 8 6.6 Channel Altera 134 6.7 Channel Sinuo 0.67 Good Step 7. Rapid G 19 None	Neck Co Avulsion s Head C Trib Rej d Habitat osition: Status: ation: osity: eeomorphic Historic No	utoff: 0 n: 0 uts: 0 juv.: No <u>Assessmer</u> 16 18 17 8 <u>C Assessme</u> Geomorp Channel	5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: ht Data Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 6.10 Riparian Veg. Zone Wid ent Data bhic Rating	Straig 1,532 None ion dth:	ghtening 2 9 <u>Left</u> 8 7	8 7			
Mid:3Delta:0Point:3Island:05.3Side:0Braiding:05.46.1Epifaunal Substrate - Avl.:6.2Pool Substrate:6.36.2Pool Substrate:6.3Pool Variability:Total Score:Habitat Rating:Habitat Stream Condition:Unconfine7.1Channel Degradation7.2Channel Aggradation	2 Other Features Flood chutes: 5 3 Steep Riffles and Head Cuts Steep Riffles: 1 Step 6. Rapi 7 6.4 Sediment Depo 14 6.5 Channel Flow 3 8 6.6 Channel Altera 134 6.7 Channel Sinuo 0.67 Good Step 7. Rapid Gr 19 None 17 None	Neck Co Avulsion s Head C Trib Rej d Habitat osition: Status: ation: osity: Peomorphie Historic No No	utoff: 0 n: 0 uts: 0 <u>Assessmer</u> 16 18 17 8 <u>C Assessme</u> Geomorp Channel Channel	5.4 Stream Ford or Animal C 5.5 Straightening: Straightening Length (ft.): 5.5 Dredging: ht Data Stream Gradiant Type 6.8 Bank Stability: 6.9 Bank Vegetation Protect 6.10 Riparian Veg. Zone Wid ent Data bhic Rating Evolution Model	Straig 1,532 None ion dth: 0.82 D	ghtening 2 9 <u>Left</u> 8 7	8 7			

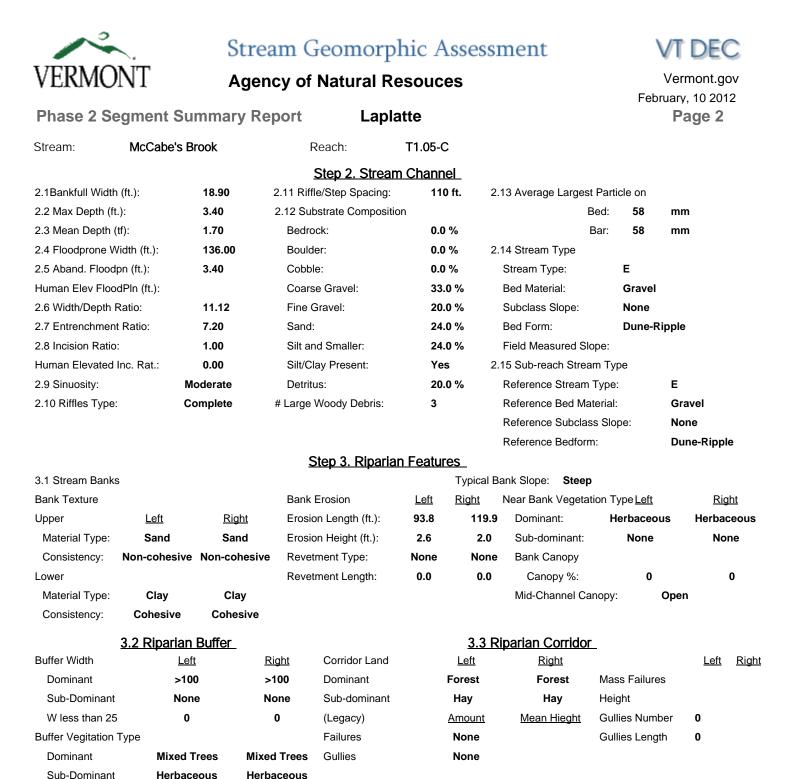
Agency of Natural Resouces

Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's Brook	SGAT Version:	4.53
Reach:	T1.05-C	Organization:	Lewis Creek Association
Segment Length	(ft): 2,977	Observers:	J.Clark, M. Mainer
Rain: Yes	5	Completion Date:	7/25/2011
		Qualtiy Control Status -	Consultant: Passed
		Qualtiy Control Status -	Staff: Provisional

Step 0 - Location: Portion of T1.05 in Charlotte, north of Lime Kiln Rd, south of VT Teddy Bear. Reach previously unassessed in 2007 due to property access.


Step 5 - Notes: Sediment transport and bar formation influenced by beaver dams and old beaver dams.

Step 7 - Narrative: No channel adjustment occuring.

Step 1. Valley and Floodplain

1.1 Segment	tation: Prope	rty Acce	ess	1.4 Adjacent Side	<u>Left</u>	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Hilly	Hilly	Valley Width (ft):	136
1.3 Corridor	Encroachmen	ts:		Continuous w/ Bank:	Never	Never	Width Determination:	Measured
<u>Length (ft)</u>	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Never	Never	Confinement Type:	BD
Berm:	0	0		Texture:	Mixed	Mixed	In Rock Gorge:	No
Road:	0	0			Hu	man Caused	Change in Valley Width?	°: No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: N	one						

VERMONT	VT DEC Vermont.gov February, 10 2012									
Phase 2 Segment Summ	nary Report	Laplatte		Page3						
Stream: McCabe's Brook	k Reach:	T1.05-C								
Step 4. Flow & Flow Modifiers										
4.1 Springs / Seeps: Minimal	4.5 Flow Regulation	Туре	4.7 Stormwater	Inputs None						
4.2 Adjacent Wetlands: Abundant	Flow Reg. Use:		Field Ditch:	Road Ditch:						
4.3 Flow Status: Low	Impoundments:		Other:	Tile Drain:						
4.4 # of Debris Jams: 0	Impoundment Loc	.:	Overland Flow:	Urb Strm Wtr Pipe:						
	4.6 Up/Down Strm fl	ow reg.:	4.9 # of Beaver	Dams: 3						
	(old) Upstrm Flow	Reg.:	Affected Len	gth (ft): 165						
4.8 Channel Constrictions: None										
	-	Bed and Planform	-							
31-1	2 Other Features	Neck Cutoff: 0	5.4 Stream Ford or Animal C	Crossing: Yes						
	Flood chutes: 4	Avulsion: 0	5.5 Straightening:	None						
	3 Steep Riffles and Head Cuts	Head Cuts: 0	Straightening Length (ft.):							
Side: 11 Braiding: 0	Steep Riffles: 0	Trib Rejuv.: No	5.5 Dredging:	None						
		Habitat Assessme								
6.1 Epifaunal Substrate - Avl.:	6.4 Sediment Depos		Stream Gradiant Type	<u>Left</u> <u>Right</u>						
6.2 Pool Substrate:	6.5 Channel Flow St		6.8 Bank Stability:							
6.3 Pool Variability:	6.6 Channel Alteration		6.9 Bank Vegetation Protect	tion						
Total Score:	0 6.7 Channel Sinuosi	ity:	6.10 Riparian Veg. Zone Wi	dth:						
Habitat Rating:	0.00									
Habitat Stream Condition:										
	Step 7. Rapid Ge	omorphic Assessm	nent Data							
Confinement Type Unconfine		<u>Historic</u>								
7.1 Channel Degradation	18 None	No Geomo	rphic Rating	0.85						
7.2 Channel Aggradation	16 None	No Channe	l Evolution Model	None						
7.3 Widening Channel	16 None	No Channe	I Evolution Stage	I						
7.4 Change in Planforml	18 None	No Geomo	rphic Condition	Reference						

Stream Sensitivity

Total Score

68

High

Agency of Natural Resouces

Vermont.gov February, 10 2012

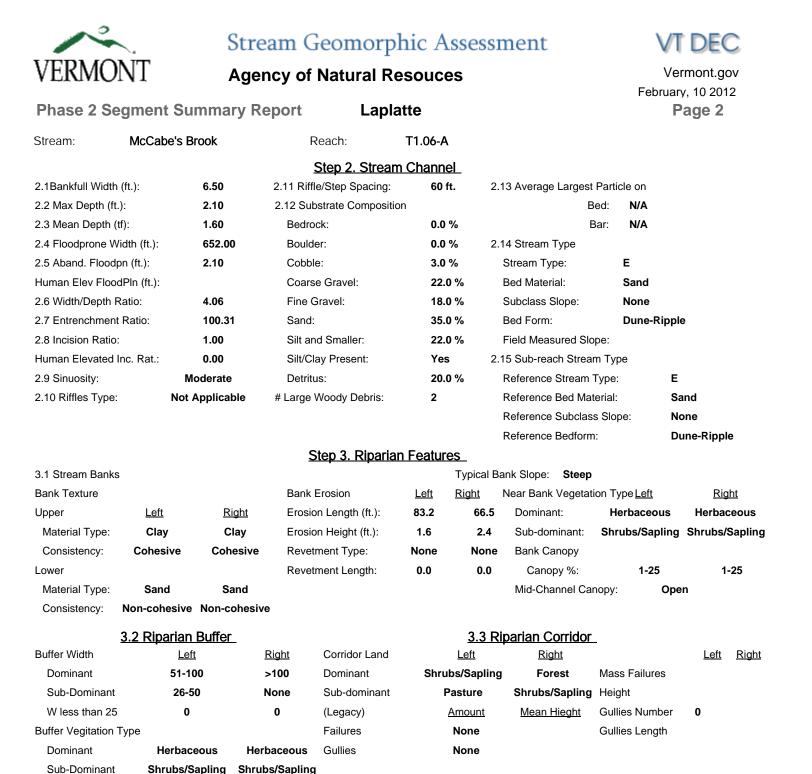
VT DEC

Page 1

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's Brook	SGAT Version:	4.53
Reach:	T1.06-A	Organization:	Lewis Creek Association
Segment Length	(ft): 3,256	Observers:	J.Clark
Rain: Ye	S	Completion Date:	7/15/2011
		Quality Control Status	- Consultant: Passed
		Qualtiy Control Status	- Staff: Provisional

Step 0 - Location: Flows through wet meadow beginning 800 feet upstream of Lime Kiln Road and going 1500 feet downstream of Lime Kiln Road.


Step 5 - Notes: Lime Kiln Culvert failed. Will need to be replaced. Little encroachment. Good buffers from adjacent farm.

Step 7 - Narrative: Minor change in planform caused by historic beaver dams. These have held up sediment and locally changed channel course.

Step 1. Valley and Floodplain

1.1 Segmer	ntation:	Channe	el Dime	ensions	1.4 Adjacent Side	<u>Left</u>	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial	Fan:	None			Hillside Slope:	Hilly	Steep	Valley Width (ft):	652
1.3 Corridor Encroachments:		Continuous w/ Bank:	Never	Sometimes	Width Determination:	Measured			
<u>Length (ft)</u>	One	<u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Never	Sometimes	Confinement Type:	VB
Berm:	0		0		Texture:	N.E.	Mixed	In Rock Gorge:	No
Road:	0		0			Н	uman Caused C	Change in Valley Width?	: No
Railroad:	0		0						
Imp. Path:	0		0						
Dev.:	1,035		0						

1.6 Grade Controls: None

VERMONT	Stream Geomorphic AssessmentERMONTAgency of Natural Resouces									
Phase 2 Segment Summ		Laplatte	uces		Vermor February, 10 Page	2012				
Stream: McCabe's Brook	k Reach:	T1.0	06-A							
Step 4. Flow & Flow Modifiers										
4.1 Springs / Seeps: Abundant	4.5 Flow Regulation	on Type		4.7 Stormwater In	nputs					
4.2 Adjacent Wetlands: Abundant	Flow Reg. Use:			Field Ditch:	0 Road Ditch:	2				
4.3 Flow Status: Low	Impoundments	Non	ie	Other:	0 Tile Drain:	0				
4.4 # of Debris Jams: 0	Impoundment L	oc.:		Overland Flow:	0 Urb Strm Wtr	Pipe: 0				
	4.6 Up/Down Strm	n flow reg.: N	lone	4.9 # of Beaver D	Dams:	1				
	(old) Upstrm Flo	ow Reg.:		Affected Lengt	th (ft):	0				
4.8 Channel Constrictions:										
	Photo	GPS	Channel Flood	orone						
Туре	Width Taken?	Taken? Co	, onstriction? Constri		Problems					
Instream Culvert	4 Yes	Yes	Yes Ye	s Deposi	tion Above,Scou	Below				
	•		anform Changes							
<i>y</i> 1 0	2 Other Features	Neck Cutoff		Ford or Animal Cro	Ū					
	Flood chutes: 1	Avulsion:	0 5.5 Straigh	•	None					
	3 Steep Riffles and Head Cu			ening Length (ft.):	0					
Side: 2 Braiding: 0	Steep Riffles: 0	Trib Rejuv.:	-	ng:	None					
C. 4. Entities al Oschatzata - Asida			sessment Data							
6.1 Epifaunal Substrate - Avl.:	6.4 Sediment Dep			adiant Type	<u>Left</u>	<u>Right</u>				
6.2 Pool Substrate:	6.5 Channel Flow		6.8 Bank S	-						
6.3 Pool Variability:	6.6 Channel Alter			egetation Protectio						
Total Score:	0 6.7 Channel Sinu	osity:	6.10 Ripar	an Veg. Zone Widt	h:					
Habitat Rating:	0.00									
Habitat Stream Condition:										
	• •	Seomorphic As	ssessment Data	-						
Confinement Type Unconfine	ed Score STD	<u>Historic</u>								
7.1 Channel Degradation	18 None	Νο	Geomorphic Rating	0.	.79					
7.2 Channel Aggradation	16 None	No	Channel Evolution M	odel N	one					
7.3 Widening Channel	16 None	No	Channel Evolution St	age I						
7.4 Change in Planforml	13 None	No	Geomorphic Condition	on R	eference					
Total Score	63		Stream Sensitivity	H	igh					

Agency of Natural Resouces

Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

Stream:McCabe's BrookReach:T1.06-BSegment Length(ft):822Rain:Yes

SGAT Version:4.53Organization:Lewis Creek AssociationObservers:J.ClarkCompletion Date:7/13/2011Qualtiy Control Status - Consultant:PaQualty Control Status - Staff:Pr

Passed Provisional

Step 0 - Location: Wooded section upstream of Lime Kiln Road.

Step 5 - Notes:

Step 7 - Narrative: This reach is similar to T1.07A with minor incision occuring. The affects of upstream alteration and historic dam may have contributed to this incision.

Step 1. Valley and Floodplain

1.1 Segment	tation: Chanr	nel Dime	ensions	1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Steep	Hilly	Valley Width (ft):	144
1.3 Corridor	Encroachmen	ts:		Continuous w/ Bank:	Never	Sometimes	Width Determination:	Measured
Length (ft)	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Never	Sometimes	Confinement Type:	BD
Berm:	0	0		Texture:	N.E.	Mixed	In Rock Gorge:	No
Road:	0	0			Н	uman Caused C	Change in Valley Width?	: No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: N	one						

Dominant

Sub-Dominant

Coniferous

Deciduous

Coniferous

Deciduous

Gullies

Stream Geomorphic Assessment

Agency of Natural Resouces

VT DEC Vermont.gov February, 10 2012

Phase 2 Se	egment Su	mmary R	eport	Lapla	tte				1001	Pa	ge 2	-
Stream:	McCabe's B	rook		Reach:	T1.06-	В						
				Step 2. Stream	n Chanr	nel						
2.1Bankfull Width	(ft.):	19.50	2.11 Rif	fle/Step Spacing:	70	ft.	2.13 Average Large	est Part	icle on			
2.2 Max Depth (ft	.):	1.75	2.12 Su	bstrate Compositio	n			Bed:	152	mm		
2.3 Mean Depth (tf):	1.30	Bedro	ock:	0.0	0 %		Bar:	128	mm		
2.4 Floodprone W	/idth (ft.):	144.00	Bould	ler:	2.0	0 %	2.14 Stream Type					
2.5 Aband. Flood	pn (ft.):	2.30	Cobb	le:	18	.0 %	Stream Type:		С			
Human Elev Floo	dPln (ft.):		Coar	se Gravel:	33	.0 %	Bed Material:		Gravel			
2.6 Width/Depth F	Ratio:	15.00	Fine	Gravel:	27	.0 %	Subclass Slope:		None			
2.7 Entrenchment	t Ratio:	7.38	Sand	:	14	.0 %	Bed Form:		Riffle-Po	ool		
2.8 Incision Ratio	:	1.31	Silt a	nd Smaller:	6.0	0 %	Field Measured S	Slope:				
Human Elevated	Inc. Rat.:	0.00	Silt/C	lay Present:	Ye	es	2.15 Sub-reach Stre	eam Ty	pe			
2.9 Sinuosity:	Μ	oderate	Detrit	us:	40	.0 %	Reference Stream	т Туре	:			
2.10 Riffles Type:	C	omplete	# Large	Woody Debris:	34	Ļ	Reference Bed M	/laterial	:			
							Reference Subcl	ass Slo	ppe:			
							Reference Bedfo	orm:				
			0 2	Step 3. Ripariar	n Featu	res						
3.1 Stream Banks	3					Typica	I Bank Slope: Mod	derate				
Bank Texture			Bank	Erosion	<u>Left</u>	<u>Right</u>	Near Bank Veget	tation T	ype <u>Left</u>		<u>Rig</u>	<u>ht</u>
Upper	<u>Left</u>	<u>Right</u>	Erosi	on Length (ft.):	181.0	0.	0 Dominant:	(Coniferou	s	Conife	erous
Material Type:	Clay	Clay	Erosi	on Height (ft.):	2.0	0.	0 Sub-dominant	: I	Deciduous	5	Decid	uous
Consistency:	Cohesive	Cohesive	Reve	tment Type:	None	No	ne Bank Canopy					
Lower			Reve	tment Length:	0.0	0.	Canopy %:		76-100)	76	-100
Material Type:	Sand	Sand					Mid-Channel (Canopy	: (Close	d	
Consistency:	Non-cohesive	Non-cohesi	ve									
	3.2 Riparian	Buffer				<u>3.3</u>	Riparian Corrido	or_				
Buffer Width	Lef	<u>t</u>	<u>Right</u>	Corridor Land		<u>Left</u>	<u>Right</u>				<u>Left</u>	<u>Right</u>
Dominant	>10	0	>100	Dominant		Forest	Forest	Ma	ss Failures	6		
Sub-Dominant	Nor	e	None	Sub-dominant		None	None	Hei	ght			
W less than 25	0		0	(Legacy)		<u>Amount</u>	<u>Mean Hieght</u>	Gul	lies Numb	er	0	
Buffer Vegitation	Туре			Failures		None		Gul	lies Lengt	ſ		

None

VERMONT	essment	VT DEC Vermont.gov February, 10 2012		
Phase 2 Segment Sun	nmary Report	Laplatte		Page3
Stream: McCabe's Bro	ook Reach:	T1.06-B		
	Step 4. Flo	w & Flow Modifiers	_	
4.1 Springs / Seeps: Minimal	4.5 Flow Regulation	Туре	4.7 Stormwater Ir	nputs None
4.2 Adjacent Wetlands: Minimal	Flow Reg. Use:		Field Ditch:	Road Ditch:
4.3 Flow Status: Low	Impoundments:	None	Other:	Tile Drain:
4.4 # of Debris Jams: 4	Impoundment Loc	.:	Overland Flow:	Urb Strm Wtr Pipe:
	4.6 Up/Down Strm flo	ow reg.: None	4.9 # of Beaver D	oams: 0
	(old) Upstrm Flow	Reg.:	Affected Lengt	h (ft): 0
4.8 Channel Constrictions: None	9			
	Step 5. Channel E	Bed and Planform C	<u>Changes</u>	
5.1 Bar Types Diagonal: 0	5.2 Other Features	Neck Cutoff: 0	5.4 Stream Ford or Animal Cro	ossing: No
Mid: 1 Delta: 0	Flood chutes: 0	Avulsion: 0	5.5 Straightening:	None
Point: 4 Island: 0	5.3 Steep Riffles and Head Cuts	Head Cuts: 0	Straightening Length (ft.):	0
Side: 5 Braiding: 0	Steep Riffles: 0	Trib Rejuv.: No	5.5 Dredging:	None
	Step 6. Rapid	Habitat Assessmer	nt Data	
6.1 Epifaunal Substrate - Avl.:	6.4 Sediment Depos	ition:	Stream Gradiant Type	Left Right
6.2 Pool Substrate:	6.5 Channel Flow St	atus:	6.8 Bank Stability:	
6.3 Pool Variability:	6.6 Channel Alteration	on:	6.9 Bank Vegetation Protectio	n
Total Score:	0 6.7 Channel Sinuosi	ty:	6.10 Riparian Veg. Zone Widt	h:
Habitat Rating:	0.00			
Habitat Stream Condition:				
	Step 7. Rapid Ge	omorphic Assessm	ent Data	
Confinement Type Unconf	• •	listoric		
7.1 Channel Degradation	14 None	No Geomorp	ohic Rating 0.	71
7.2 Channel Aggradation	15 None	No Channel	Evolution Model F	
7.3 Widening Channel	14 None	No Channel	Evolution Stage	
7.4 Change in Planforml	14 None	No Geomorp	ohic Condition G	ood

Stream Sensitivity

High

Total Score

57

Agency of Natural Resouces

Vermont.gov February, 10 2012

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe's Brook	SGAT Version:	4.53
Reach:	T1.07-A	Organization:	Lewis Creek Association
Segment Length([ft): 777	Observers:	J.Clark
Rain: Yes	6	Completion Date:	7/13/2011
		Qualtiy Control Status -	Consultant: Passed
		Qualtiy Control Status -	Staff: Provisional

Step 0 - Location: Wooded section upstream of Lime Kiln Road.

Step 5 - Notes:

Step 7 - Narrative: Channel in good condition. Minor incision has occured, possibly due to breach of upstream dam - located at reach break. Some access to floodplains still available.

Step 1. Valley and Floodplain

1.1 Segmentation: Channel Dimensions		1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features			
1.2 Alluvial F	an: None			Hillside Slope:	Steep	Hilly	Valley Width (ft):	140
1.3 Corridor Encroachments:			Continuous w/ Bank:	Never	Sometimes	Width Determination:	Measured	
Length (ft)	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Never	Sometimes	Confinement Type:	VB
Berm:	0	0		Texture:	N.E.	Sand	In Rock Gorge:	No
Road:	0	0			Н	uman Caused C	Change in Valley Width?	No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Controls: None								

Sub-Dominant

None

None

Stream Geomorphic Assessment

Agency of Natural Resouces

Vermont.gov February, 10 2012 **Page 2**

VT DEC

Phase 2 Segment Summary Report Laplatte								Februa	Page		2	
Stream:	McCabe's Brook		each:	T1.07-/	4							
			<u> </u>	Step 2. Stream	Chanr	<u>nel</u>						
2.1Bankfull Width	(ft.):	9.00	2.11 Riffl	e/Step Spacing:	50	ft.	2.13 Average Larges	st Partic	le on			
2.2 Max Depth (ft.):	0.75	2.12 Sub	strate Compositio	n			Bed:	146	mm		
2.3 Mean Depth (t	tf):	0.55	Bedro	ck:	0.0)%		Bar:	150 1	mm		
2.4 Floodprone W	'idth (ft.):	77.00	Boulde	er:	3.0)%	2.14 Stream Type					
2.5 Aband. Floodp	on (ft.):	1.00	Cobble	e:	31	.0 %	Stream Type:		С			
Human Elev Flood	dPln (ft.):		Coars	e Gravel:	14.0 % Bed Material:				Gravel			
2.6 Width/Depth R	Ratio:	16.36	Fine G	Gravel:	20	.0 %	Subclass Slope:		None			
2.7 Entrenchment	Ratio:	8.56	Sand:		9.0)%	Bed Form:	Riffle-Poo	l			
2.8 Incision Ratio:		1.33	Silt an	d Smaller:	23	.0 %	Field Measured S					
Human Elevated I	Elevated Inc. Rat.: 0.00			ay Present:	Ye	s	2.15 Sub-reach Stre	е				
2.9 Sinuosity:	2.9 Sinuosity: Low			IS:	40	.0 %	6 Reference Stream Type:					
2.10 Riffles Type:	С	omplete	# Large \	Woody Debris:	17		Reference Bed Ma	aterial:				
	Reference Subclass Slo							iss Slop	e:			
							Reference Bedfor	m:				
			<u>S</u>	tep 3. Ripariar	n Featu	res						
3.1 Stream Banks	i					Typical	Bank Slope: Mode	erate				
Bank Texture			Bank I	Erosion	<u>Left</u>	<u>Right</u>	Near Bank Vegeta	ation Ty	pe <u>Left</u>		<u>Righ</u>	<u>nt</u>
Upper	<u>Left</u>	<u>Right</u>	Erosio	n Length (ft.):	165.7	26.	4 Dominant:	D	eciduous	D	ecidu	ious
Material Type:	Boulder/Cobb e	l Boulder/Cobb e	I Erosio	n Height (ft.):	1.7	2.0	Sub-dominant:		None		Non	e
Consistency:	Cohesive	Cohesive	Revet	ment Type:	None	Nor	e Bank Canopy					
Lower			Revet	ment Length:	0.0	0.0	Canopy %:		76-100		76-	100
Material Type:	Gravel	Gravel					Mid-Channel C	anopy:	CI	osed		
Consistency:	Cohesive	Cohesive										
3.2 Riparian Buffer 3.3 Riparian Corridor												
Buffer Width	Let	<u>'t F</u>	<u>Right</u>	Corridor Land		<u>Left</u>	<u>Right</u>			<u>I</u>	<u>Left</u>	<u>Right</u>
Dominant	>10	0 >	100	Dominant		Forest	Forest	Mas	s Failures			
Sub-Dominant	Nor	ie N	lone	Sub-dominant		None	None	Heig	ht			
W less than 25	0		0	(Legacy)		<u>Amount</u>	<u>Mean Hieght</u>	Gulli	es Number	· 1		
Buffer Vegitation	Гуре			Failures		None		Gulli	es Length			
Dominant	Mixed	Frees Mixe	d Trees	Gullies		One	5.0					

\sim	Stream Geom	orphic Asse	ssment	VT DEC	
VERMONT	Agency of Natura	al Resouces		Vermont.gov	
Phase 2 Segment	Summary Report	Laplatte		February, 10 2012 Page3	
Stream: McCab	e's Brook Reach:	T1.07-A			
	Step 4. Flow	w & Flow Modifiers	-		
4.1 Springs / Seeps: Ab	undant 4.5 Flow Regulation T	Гуре	4.7 Stormwater Inp	outs None	
4.2 Adjacent Wetlands: Min	nimal Flow Reg. Use:		Field Ditch:	Road Ditch:	
4.3 Flow Status: Lo	w Impoundments:	None	Other:	Tile Drain:	
4.4 # of Debris Jams: 2	Impoundment Loc.:	:	Overland Flow:	Urb Strm Wtr Pipe:	
	4.6 Up/Down Strm flo	w reg.: None	4.9 # of Beaver Da	ms: 0	
	(old) Upstrm Flow F	Reg.:	Affected Length	(ft): 0	
4.8 Channel Constrictions:	None				
	Step 5. Channel B	ed and Planform Cl	hanges_		
5.1 Bar Types Diagonal:	0 5.2 Other Features	Neck Cutoff: 0	5.4 Stream Ford or Animal Cros	ssing: No	
Mid: 4 Delta:	0 Flood chutes: 2	Avulsion: 0	5.5 Straightening:	None	
Point: 2 Island:	0 5.3 Steep Riffles and Head Cuts	Head Cuts: 0	Straightening Length (ft.):	0	
Side: 2 Braiding:	0 Steep Riffles: 0	Trib Rejuv.: Yes	5.5 Dredging:	None	
	Step 6. Rapid I	Habitat Assessment	t Data		
6.1 Epifaunal Substrate - Av	I.: 6.4 Sediment Deposit	tion:	Stream Gradiant Type	Left Right	
6.2 Pool Substrate:	6.5 Channel Flow Sta	atus:	6.8 Bank Stability:		
6.3 Pool Variability:	6.6 Channel Alteratio	n:	6.9 Bank Vegetation Protection		
Total Score:	0 6.7 Channel Sinuosity	y:	6.10 Riparian Veg. Zone Width:		
Habitat Rating:	0.00				
Habitat Stream Condition:					
	Step 7. Rapid Geo	morphic Assessme	nt Data		
Confinement Type	Unconfined Score STD Hi	<u>istoric</u>			
7.1 Channel Degradation	11 None	No Geomorph	nic Rating 0.7	5	
7.2 Channel Aggradation	17 None	No Channel E	Evolution Model F		
7.3 Widening Channel	16 None	No Channel E	Evolution Stage		

7.4 Change in Planforml

Total Score

16

60

None

No

Geomorphic Condition

Stream Sensitivity

Good

High

Agency of Natural Resouces

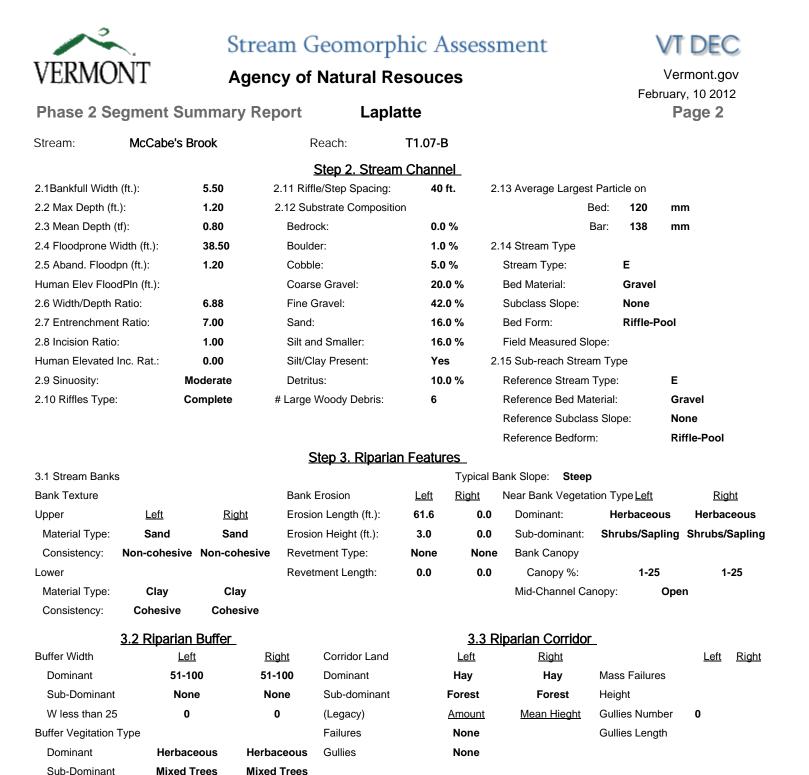
Vermont.gov February, 10 2012

VT DEC

Page 1

Phase 2 Segment Summary Report Laplatte

Stream:	McCabe'	s Brook	SGAT Version:	4.53	
Reach:	T1.07-B		Organization:	Lewis Creek Association	
Segment Leng	gth(ft):	1,136	Observers:	J.Clark	
Rain:	Yes		Completion Date:	7/13/2011	
			Qualtiy Control Status	- Consultant: Passed	
			Qualtiy Control Status	- Staff: Provisional	


Step 0 - Location: From farm ford behind nordic farm (off of Route 7) through wetland area to treeline. No road crossings in segment. Lime Kiln Road 2400 ft downstream, Hinesburg Road 8500 ft upstream.

Step 5 - Notes: Remains of an old dam abutments at treeline at downstream end of segment suggests that this segment could have been created by the historic influence of an old dam. Segment could have historically been similar to the wooded segment below.

Step 7 - Narrative: Channel in good condition.

Step 1. Valley and Floodplain

1.1 Segment	ation: Chann	el Dime	ensions	1.4 Adjacent Side	Left	<u>Right</u>	1.5 Valley Features	
1.2 Alluvial F	an: None			Hillside Slope:	Steep	Steep	Valley Width (ft):	40
1.3 Corridor Encroachments:				Continuous w/ Bank:	Never	Never	Width Determination:	Measured
Length (ft)	<u>One</u> <u>Height</u>	<u>Both</u>	<u>Height</u>	Within 1 Bankfull W:	Sometimes	Sometimes	Confinement Type:	BD
Berm:	0	20	6	Texture:	Sand	Sand	In Rock Gorge:	No
Road:	0	0			Hu	man Caused C	Change in Valley Width?	': No
Railroad:	0	0						
Imp. Path:	0	0						
Dev.:	0	0						
1.6 Grade Co	ontrols: No	one						

Stream Geomorphic AssessmentVERMONTAgency of Natural Resouces							١	VT DEC
VERIMONI		Agency	of Natu	rai Re	souces			uary, 10 2012
Phase 2 Segme	nt Summa	ary Repor	t	Laplat	tte			Page3
Stream: McC	abe's Brook		Reach:		Т1.07-В			
			Step 4. Flo	ow & Flo	w Modifiers	<u>.</u>		
4.1 Springs / Seeps:	Minimal	4.5 Flov	w Regulation	Туре		4.7 5	Stormwater Inputs No	ne
4.2 Adjacent Wetlands:	Abundant	Flow	Reg. Use:			Field	I Ditch: Roa	ad Ditch:
4.3 Flow Status:	Low	Impo	oundments:		None	Othe	er: Tile	e Drain:
4.4 # of Debris Jams:	0	Impo	undment Loc	o.:		Over	rland Flow: Urb	Strm Wtr Pipe:
		4.6 Up/	Down Strm f	low reg.:	None	4.9 #	f of Beaver Dams:	0
		(old)	Upstrm Flow	Reg.:	None	Af	fected Length (ft):	0
4.8 Channel Constrictions	<u>.</u> .							
			Photo	GPS	Channel	Floodprone		
Туре		Width		Taken?	Constrictio	•	Prot	olems
Old Abutm	nent	15	Yes	Yes	No	Yes		ve,Scour Below
		•	. Channel		Planform (Changes		
5.1 Bar Types Diagon	al: 0 5.2 C	Other Features		Neck C	utoff: 0	5.4 Stream Ford	or Animal Crossing:	Yes
Mid: 3 Delta:	0 Flo	ood chutes:	0	Avulsio	on: 0	5.5 Straightening	None	
Point: 0 Island:	0 5.3 S	Steep Riffles and	d Head Cuts			Straightening L	_ength (ft.): 0	
Side: 0 Braiding	g: 0 St	•	0		ejuv.: No	5.5 Dredging:	None	
			• •		Assessme	nt Data		
6.1 Epifaunal Substrate -	Avl.:		diment Depos			Stream Gradiant	Туре	Left Right
6.2 Pool Substrate:		6.5 Cha	annel Flow S	tatus:		6.8 Bank Stability	r:	
6.3 Pool Variability:		6.6 Cha	annel Alterati	ion:		6.9 Bank Vegetat	ion Protection	
Total Score:		0 6.7 Cha	annel Sinuos	sity:		6.10 Riparian Ve	g. Zone Width:	
Habitat Rating:	0).00						
Habitat Stream Condition	:							
		Step 7.	Rapid Ge	omorphi	ic Assessm	ent Data		
Confinement Type	Unconfined	-	-	Historic				
7.1 Channel Degradation			None	No	Geomor	phic Rating	0.84	
7.2 Channel Aggradation		15 N	None	No	Channel	Evolution Model	None	
7.3 Widening Channel		18 N	None	No	Channel	Evolution Stage	I	
7.4 Change in Planforml		18 N	None	No	Geomor	phic Condition	Good	
Total Score		67				Sensitivity	High	

Agency of Natural Resouces

Vermont.gov February, 10 2012

I DEC

Page 1

Phase 2 Segment Summary Report Laplatte

Stream:McCabe's BrookReach:T1.08-0Segment Length(ft):11,204Rain:Yes

SGAT Version:4.53Organization:Lewis Creek AssociationObservers:J.Clark, R.SchiffCompletion Date:7/18/2011Qualtiy Control Status - Consultant:PaQualtiy Control Status - Staff:PrWhy Not Assessed:weetee

Passed Provisional wetland

Step 0 - Location: Begins just west of Homesteader Drive (off of Hinesburg Road) at headwaters. Travels through wetlands across Hinesburg Road through fields. Ends at farm ford behind Nordic Farm (on Route 7). This reach is also impounded at lower section.

Step 5 - Notes:

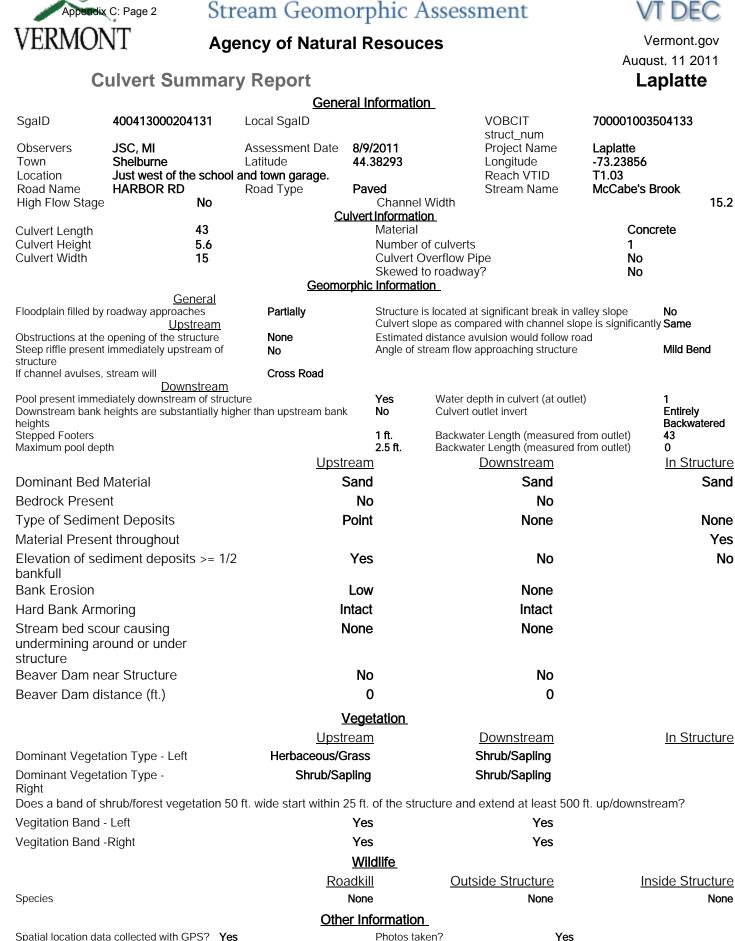
Step 7 - Narrative:

Step 1. Valley and Floodplain

1.1 Segmentation:	1.4 Adjacent Side	Left Right	1.5 Valley Features
1.2 Alluvial Fan: None	Hillside Slope:		Valley Width (ft):
1.3 Corridor Encroachments:	Continuous w/ Bank:		Width Determination:
Length (ft) One Height Both Height	Within 1 Bankfull W:		Confinement Type:
Berm: 0 0	Texture:		In Rock Gorge:
Road: 347 4 0		Human Caused (Change in Valley Width?:
Railroad: 0 0			
Imp. Path: 1,008 1 0			
Dev.: 1,094 0			
1.6 Grade Controls:			
	Total Total Height	Photo GPS	
Type Location	Height Above Water	Taken? Taken?	

Туре	Location	Height	Above Water	Taken?
Dam		1.0	5.0	

Phase 2 Segment Summary Report Laplatter Page 2 Stream: McCabe's Brook Reach: T1.08-0 2.13 average Largest Particle on Stream: 2.13 Average Largest Particle on 2.14 Bank/ull Width (ft.): 2.11 Stifflac/Step Spacing: 2.13 Average Largest Particle on 2.24 Max Depth (ft.): 2.12 Substrate Composition % Bar: 2.3 Maan Depth (ft.): Bedrook: % Stream Type: 2.4 Floodprone Width (ft.): Boulder: % Stream Type: 2.5 Aband. Floodpfn (ft.): Coarse Gravel: % Subclass Stope: V 2.6 Width/Depth Ratio: 0.00 Stift and Smaller: % Bed Material: 2.6 Width/Depth Ratio: 0.00 Stift Clay Present: 2.15 Sub-reach Stream Type: V 2.7 Entrenchment Ratio: 0.00 Stift Clay Present: % Bed Material: V 2.9 Sinuosity: #Large Woody Debris: Field Measured Stream Type: V Stift and Smaller: % Reference Stream Type: V 2.10 Riffies Type: #Large Woody Debris: Typicat Bark Vegetation Type Left Right Reference Stream Type: V <th>VERMO</th> <th>NT</th> <th></th> <th></th> <th>Geomorp f Natural Re</th> <th></th> <th></th> <th>nent</th> <th>Fe</th> <th>VTC Vermo ebruary, 10</th> <th>-</th> <th></th>	VERMO	NT			Geomorp f Natural Re			nent	Fe	VTC Vermo ebruary, 10	-		
Situation of the spacing: 2.11 Riffie/Step Spacing: 2.13 Average Largest Particle on 2.2 Max Depth (ft): 2.12 Substrate Composition % Bed: 2.3 Maan Depth (ft): Boulde: % 2.14 Stream Type: Bat: 2.4 Floodpron (With (ft): Boulde: % Stream Type: Field 2.6 Mach Depth (ft): Cobie: % Stream Type: Field 2.6 Match Dodph (ft.): Cobie: % Stream Type: Field 2.6 Match Dodph (ft.): Cobie: % Stream Type: Field 2.6 Match Dodph (ft.): 0.00 Sand: % Bed Form: Field 2.6 Match Dodph Ratio: 0.00 Sand: % Field Measured Slope: Field 2.7 Entronchemer Ratio: 0.00 Sand: % Reference Stead Material: Field 2.9 Sinuosity: Detritu: match Steager Stope: Field Measured Slope: Field Field 2.10 Riffies Type: # Bank Erosion Left Reference Subdass Slope: Field 2.10 Riffies Type: # Bank Erosion Left Right	Phase 2 Se	gment	Summary F	Report	Lapla	itte				Pag	e 2		
2.18anktull Width (ft.): 2.11 Riffle/Siep Spacing: ::::::::::::::::::::::::::::::::::::	Stream:	McCab	e's Brook		Reach:	T1.08-0)						
2.2 Max Depth (ft.): 2.12 Substrate Composition Bed: Bed: 2.3 Mean Depth (ft.): Boulde:: % 2.14 Stream Type: Bar: 2.4 Floodprone With (ft.): Coase Gravel: % Stream Type: I 2.5 Aband. Floodprin (ft.): Coase Gravel: % Bed Material: I 2.6 Width/Depth Ratio: 0.00 Fine Gravel: % Bed Material: I 2.8 Indision Ratio: 0.00 Sand: % Bed Form: I I 2.8 Indision Ratio: 0.00 Sand: % Reference Stope: I I 2.9 Sinuosity: 0.00 Sitt/Clay Present: % Reference Bed Material: I <td< td=""><td></td><td></td><td></td><td></td><td>Step 2. Stream</td><td>h Chann</td><td><u>el</u></td><td></td><td></td><td></td><td></td><td></td></td<>					Step 2. Stream	h Chann	<u>el</u>						
2.3 Mean Depth (f): Bolde:: % Ear: Stream Type: Stream Type: <td>2.1Bankfull Width</td> <td>(ft.):</td> <td></td> <td>2.11 Ri</td> <td>ffle/Step Spacing:</td> <td></td> <td>2.1</td> <td>13 Average Larges</td> <td>t Particle on</td> <td></td> <td></td> <td></td>	2.1Bankfull Width	(ft.):		2.11 Ri	ffle/Step Spacing:		2.1	13 Average Larges	t Particle on				
2.4 Floodpror Boulder: % 2.14 Stream Type: No 2.5 Aband. Floodpro (ft.): Cobble: % Stream Type: No 2.6 Width/Depth Ratio: 0.00 Sint % Bed Material: No 2.6 Width/Depth Ratio: 0.00 Sint % Bed Form: No 2.7 Entrenchmem Ratio: 0.00 Silt Am Smaller: % Bed Form: No 2.8 Incision Ratio: 0.00 Silt Am Smaller: % Bed Form: No 2.9 Sinuosity: 0.00 Silt Am Smaller: % Reference Stream Type: No 2.10 Riffles Type: # Large Woody Debris: * Reference Stodatiss Stope: No 2.10 Riffles Type: # Large Woody Debris: Reference Stodatiss Stope: No No 3.1 Stream Banks Erosion Length (ft.): 0.0 0.0 Dominant: No No Quiper Left Right Erosion Length (ft.): 0.0 0.0 Sub-dominant: No Quifer Vertified Type: Revetment Length: 0.0 0.0 Ganey %: No Sub-dominant:	2.2 Max Depth (ft.):		2.12 St	ubstrate Compositio	'n		I	Bed:				
2.5 Aband. Floodpn (ft.): Cobble: % Stream Type: Human Elev FloodPln (ft.): Coarse Gravel: % Bed Material: 2.6 Width/Depth Ratio: 0.00 Sine Gravel: % Subclass Slope: 2.7 Entrenchment Ratio: 0.00 Sand: % Subclass Slope: 2.8 Incision Ratio: 0.00 Silt/Clay Present: % Erield Measured Slope: 2.9 Sinuosity: Detritus: % Reference Stream Type: 2.9 Sinuosity: Uperitus: % Reference Stream Type: 2.10 Riffles Type: # Large Woody Debris: Reference Stream Type:	2.3 Mean Depth (t	tf):		Bedr	ock:	%			Bar:				
Human Elev FloodPln (ft.):Coarse Gravel:%Bet Haterial:Note2.6 Width/Depth Ratio:0.00Sand:%Subclass Slope:2.7 Entrenchment Ratio:0.00Salt and Smaller:%Field Measured Slope:2.8 Incision Ratio:0.00Silt // Smaller:% $2 \cdot 15$ Sub-reach Stream Type2.9 Sinuosity:Detritus:%Reference Stream Type2.9 Sinuosity:Detritus:%Reference Bed Material:2.10 Riffles Type:*Reference Bed Material:2.11 Stram BanksStram Slope:Reference Bedform:Fisher KetureStram Facture9 Gank TextureBank TextureBank ErosionLeft10 RightRightNoreSub-dominant:11 Grave:ReghtNoreSub-dominant:12 Gonistency:ReghtNoreSub-dominant:14 Gref MidthLeftRightNoreBank Canopy16 Genistency:ReghtConfor Landt (ft.):0.0Que dominant:17 Gref Field WidthLeftRightNoreMaser Sailures16 Gref WidthLeftRightNoreMaser Sailures17 Gref Stram RafeSub-dominantSub-dominantLeft18 Gref WidthLeftRightNoreMass Failures19 Gref WidthLeftRightNass FailuresHeight19 Gref VidthLeftRightLeft19 Gref Stram RafeS	2.4 Floodprone W	'idth (ft.):		Boul	der:	%	2.1	14 Stream Type					
2.6 Width/Depth Ratic:0.00Fine Gravel:%Subclass Slope:2.7 Entrenchment Ratio:0.00Sand:%Bed Form:2.8 Incision Ratio:0.00Silt and Smaller:%Field Measured Slope:2.8 Incision Ratio:0.00Silt and Smaller:%Field Measured Slope:2.8 Incision Ratio:0.00Silt and Smaller:%Field Measured Slope:2.9 Sinuosity:0.00Silt and Smaller:%Field Measured Slope:2.9 Sinuosity:Detritus:%Reference Stream Type:2.10 Riffles Type:*# Large Woody Debris:Reference Subclass Slope:2.10 Riffles Type:*# Large Woody Debris:Reference Subclass Slope:3.1 Stream BanksStep 3. RIparitan ForsionLaftRightNominantRightUpperLeftRightErosion Length (ft.):0.00.0Sub-dominantMaterial Type:Revetment Type:NoneNoneBank CanopyLowerRevetment Length:0.00.0Ganopy %:Material Type:Field LargeCorridor LandLaftRightLaftRightMaterial Type:Sub-dominant </td <td>2.5 Aband. Floodp</td> <td>on (ft.):</td> <td></td> <td>Cobl</td> <td>ole:</td> <td>%</td> <td></td> <td>Stream Type:</td> <td></td> <td></td> <td></td> <td></td>	2.5 Aband. Floodp	on (ft.):		Cobl	ole:	%		Stream Type:					
2.7 Enterdement Ratio: 0.00 Sand: % Bed Form: 1	Human Elev Flood	dPln (ft.):		Coa	rse Gravel:	%		Bed Material:					
2.8 Incision Ratio:0.00Silt and Smaller:%Field Measured Slope:Human Elevated Inc. Rat:0.00Silt/Clay Present: 2.15 Sub-reach Stream Type2.9 Sinuosity:Detritus:%Reference Stream Type:2.10 Riffles Type:# Large Woody Debris:%Reference Subclass Slope:2.10 Riffles Type:# Large Woody Debris:%Reference Subclass Slope:2.10 Riffles Type:# Large Woody Debris:Reference Subclass Slope:3.1 Stream BanksFash ErosionLeftRightBank TextureBank ErosionLeftRightUpperLeftRightErosion-Length (ft.):0.00.0Material Type:Reverment Type:NoneBank CanopyLowerReverment Type:NoneBank Canopy %:Material Type:RightCorridor Land0.00.0Consistency:RightCorridor LandLeftRightMaterial Type:Sub-JominantMass FailuresKeftSub-DominantSub-JominantMass FailuresKeftSub-DominantSub-JominantHeightMuss failuresSub-JominantHeightMuss failuresSub-JominantHeightSub-DominantGullies Number0Sub-DominantGullies Number0Sub-DominantGullies Number0Sub-DominantGulliesNoreSub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-Sub-	2.6 Width/Depth R	Ratio:	0.00	Fine	Gravel:	%		Subclass Slope:					
Human Elevated Inc. Rat:0.00Sit// Clay Present: 2.15 Sub-reach Stream Type:2.9 Sinuosity:Detritus:%Reference Stream Type:2.10 Riffles Type:# Large Woody Debris:Reference Staduarial:2.10 Riffles Type:# Large Woody Debris:Reference Subclass Stope:2.10 Riffles Type:# Large Woody Debris:Reference Subclass Stope:2.10 Riffles Type:Falterence Bedform:Reference Bedform:Type:Type:Type:Type:Store:Type:Type:Type:Type:Type:Type:Type:Sub-dominantConsistency:SightConsistency:SightConsistency:Sub-Portion:NoneNoneSightConsistency:SightConsistency:Material Type:Sight Consigner:SightSightConsistency:Material Type:NoneNoneMaterial Type:Sight Considering:Sight Considering:Sight Considering: <td colsp<="" td=""><td>2.7 Entrenchment</td><td>Ratio:</td><td>0.00</td><td>Sand</td><td>d:</td><td>%</td><td></td><td>Bed Form:</td><td></td><td></td><td></td><td></td></td>	<td>2.7 Entrenchment</td> <td>Ratio:</td> <td>0.00</td> <td>Sand</td> <td>d:</td> <td>%</td> <td></td> <td>Bed Form:</td> <td></td> <td></td> <td></td> <td></td>	2.7 Entrenchment	Ratio:	0.00	Sand	d:	%		Bed Form:				
2.9 Sinuosity: 2.10 Riffles Type:Detritus:%Reference Stream Type:2.10 Riffles Type:# Large Woody Debris:Reference Bed Material: Reference Bed Material: Reference Bedform: Reference Bedform:2.10 Riffles Type:# Large Woody Debris:Reference Subclass Stope: Reference Bedform: Reference Bedform:3.1 Stream BanksEtsp 3. Riparlar Evature: Bank TextureStope: Reference Bedform:9 Ant KextureBank ErosionLeftRightNear Bank Vegetation Type LeftRight10 Material Type: Consistency:Erosion Height (ft.):0.00.0Dominant:Kight10 Material Type: 	2.8 Incision Ratio:		0.00	Silt a	and Smaller:	%		Field Measured SI	ope:				
2.10 Riffles Type: # Large Woody Debris: Reference Bed Material: Reference Subclass Slope: Reference Bedform: Typical Slope: Reference Bedform: 3.1 Stream Banks State Slope: Bank Texture Bank Erosion Length (ft.): Slope: Bank Texture Bank Erosion Length (ft.): 0.0 0.0 Dominant: Material Type: Erosion Length (ft.): 0.0 0.0 Sub-dominant: Consistency: Revetment Type: None None Bank Canopy: Lower Revetment Type: None None Bank Canopy: Material Type: Revetment Length: 0.0 0.0 Canopy %: Material Type: Revetment Length: 0.0 0.0 Canopy %: Material Type: State Stat	Human Elevated I	nc. Rat.:	0.00	Silt/0	Clay Present:		2.1	15 Sub-reach Strea	am Type				
Alternal Subsection Right New Exact Subsection New Exact Subsection 3.1 Stream Banks Exact Subsection Types Sank Texture New Exact Subsection Bank Texture Bank Erosion Left Right New Exact Subsection Name Upper Left Right Erosion Left Right New Exact Subsection Name Material Type: Erosion Left None None Bank Canopy Name Lower Revertmen Length: 0.0 0.0 Canopy %: Name Name Material Type: Repartment Length: 0.0 0.0 Canopy %: Name Name Material Type: Repartment Length: 0.0 0.0 Canopy %: Name Name Consistency: Repartment Length: 0.0 0.0 Canopy %: Name Name Buffer Width Left Right Corridor Land Left Right Name	2.9 Sinuosity:			Detr	itus:	%		Reference Stream	Туре:				
Hereinse Here	2.10 Riffles Type:			# Large	e Woody Debris:			Reference Bed Ma	aterial:				
Bark Texture Typical Jester Stope: Bank Texture Bank Textore Bank Textore Reft Right Near Bank Vegetation Type Left Right Upper Left Right Erosion Left Right Dominant: Image: Stand Vegetation Type Left Right Right Material Type: Erosion Left Right Erosion Length (ft.): 0.0 0.0 Sub-dominant: Image: Stand Vegetation Type Left Right Right Right Sub-dominant: Image: Stand Vegetation Type Left Right Right Right Sub-dominant: Image: Stand Vegetation Type Left Right Ri								Reference Subclas	ss Slope:				
3.1 Stream Banks Typical Bark Toxion Left Right Near Bank Vegetation Type Left Right Upper Left Right Near Bank Vegetation Type Left Right Right Material Type: Left Right Erosion Height (ft.): 0.0 0.0 Sub-dominant: Image: Sub-dominant:								Reference Bedforr	m:				
Bank TextureBank ErosionLeftRightNear Bank Vegetation Type LeftRightUpperLeftRightErosion Length (ft.):0.00.0Dominant:Material Type:Erosion Height (ft.):0.00.0Sub-dominant:Image: Sub-dominant:Consistency:Revetment Type:NoneNoneBank CanopyImage: Sub-dominant:Image: Sub-dominant:LowerRevetment Length:0.00.0Canopy %:Image: Sub-dominant:Image: Sub-dominant:Image: Sub-dominant:Material Type:Staterial Type:Sub-dominant:Sub-dominant:Image: Sub-dominant:Image: Sub-dominant:Image: Sub-dominant:Image: Sub-dominant:Buffer WidthLeftRightCorridor LandLeftRightImage: Sub-dominant:Image: Sub-dominant:Imag					Step 3. Ripariar	n Featur	<u>es</u>						
UpperLeftRightErosio-Length (ft.):0.00.0Dominant:Material Type:Erosio-Height (ft.):0.00.0Sub-dominant:IIConsistency:Reverment Type:NoneNoneBank CanopyIII <tdi< td=""><td>3.1 Stream Banks</td><td>;</td><td></td><td></td><td></td><td></td><td>Typical Ba</td><td>ank Slope:</td><td></td><td></td><td></td><td></td></tdi<>	3.1 Stream Banks	;					Typical Ba	ank Slope:					
Material Type:Erosion Height (ft.):0.0Sub-dominant:Consistency:Revetment Type:NoneBank CanopyLowerRevetment Length:0.0Canopy %:Material Type:Revetment Length:0.0Canopy %:Material Type:Mid-Channel CanopyMid-Channel CanopyConsistency:Sub-DominantLeftRightBuffer WidthLeftRightCorridor LandLeftRightLeftRightDominantDominantSub-DominantMass FailuresLeftRightIW less than 256,5023,982(Legacy)AmountMean HieghtGullies Number0Buffer Vegitation TypeFailuresNoneNoneGullies Length0IDominantGulliesGulliesGullies0IIBuffer Vegitation TypeGulliesGulliesNoneIIDominantGulliesGulliesIIIBuffer Vegitation TypeGulliesGulliesIIDominantGulliesIIIIBuffer Vegitation TypeGulliesGulliesIIDominantGulliesIIIIBuffer Vegitation TypeGulliesGulliesIIDominantGulliesIIIIIGulliesIIIIIGulliesIIIIII <td< td=""><td>Bank Texture</td><td></td><td></td><td>Banl</td><td><pre>K Erosion</pre></td><td><u>Left</u></td><td><u>Right</u></td><td>Near Bank Vegeta</td><td>tion Type <u>Lef</u></td><td><u>t</u></td><td><u>Rig</u></td><td><u>ht</u></td></td<>	Bank Texture			Banl	<pre>K Erosion</pre>	<u>Left</u>	<u>Right</u>	Near Bank Vegeta	tion Type <u>Lef</u>	<u>t</u>	<u>Rig</u>	<u>ht</u>	
Consistency:Reverwent Type:NoneNoneBank CanopyLowerReverment Length:0.00.0Canopy %:Material Type:Mid-Channel Canopy:Mid-Channel Canopy:Consistency:Sar Riperian BufferSar RightItel RightBuffer WidthLeftRightCorridor LandDominantDominantObminantSub-dominantHeightSub-DominantSub-dominantSub-dominantHeightItel RightW less than 256,5023,982(Legacy)AmountMean HieghtGullies NumberBuffer Vegitation TypeGulliesGulliesNoneGullies Length0	Upper	<u>Left</u>	<u>Right</u>	Eros	ion Length (ft.):	0.0	0.0	Dominant:					
Lower Revert Length: 0.0 0.0 Canopy %: Material Type: Consistency:	Material Type:			Eros	ion Height (ft.):	0.0	0.0	Sub-dominant:					
Material Type: Mid-Channel Carop: Consistency: Mid-Channel Corridor. Buffer Width Left Right Corridor Land Left Right Left Right Buffer Width Left Right Corridor Land Left Right Left Right Dominant Dominant Sub-dominant Sub-dominant Height Height Nass Failures Itel Sub-dominant Mass Failures Itel Sub-dominant Mass Failures Itel Sub-dominant Itel Sub-dominant Height Itel Sub-dominant Mass Failures Itel Sub-dominant Itel Sub-dominant Itel Sub-dominant Itel Sub-dominant Mean Hieght Guilies Number 0 Itel Sub-dominant Itel Sub-dominant Itel Sub-dominant Itel Sub-dominant	Consistency:			Reve	etment Type:	None	None	Bank Canopy					
Subsective state Subfer Width Left Right Corridor Land Left Right Right Right Buffer Width Left Right Corridor Land Left Right Left Right Dominant Dominant Dominant Dominant Mass Failures Height Height W less than 25 6,502 3,982 (Legacy) Amount Mean Hieght Gullies Number 0 Image: Colling transport	Lower			Reve	etment Length:	0.0	0.0	Canopy %:					
3.2 Riparian Buffer Buffer Width Left Right Corridor Land Left Right Right Right Dominant Dominant Dominant Sub-dominant Mass Failures Height	Material Type:							Mid-Channel Ca	anopy:				
Buffer WidthLeftRightCorridor LandLeftRightLeftRightLeftRightDominantDominantDominantDominantMass FailuresHeightHeightHeightHeightW less than 256,5023,982(Legacy)AmountMean HieghtGullies Number0Image: ConstraintBuffer Vegitation TypeFailuresNoneGullies Length0Image: ConstraintImage: ConstraintDominantImage: ConstraintGulliesGulliesStateStateImage: ConstraintImage: ConstraintBuffer Vegitation TypeImage: ConstraintGulliesGulliesStateImage: ConstraintImage: ConstraintImage: ConstraintDominantImage: ConstraintGulliesGulliesStateImage: ConstraintImage: ConstraintImage: ConstraintBuffer Vegitation TypeImage: ConstraintGulliesGulliesImage: ConstraintImage: ConstraintImage: ConstraintDominantImage: ConstraintGulliesGulliesImage: ConstraintImage: ConstraintImage: ConstraintDominantImage: ConstraintGulliesGulliesImage: ConstraintImage: ConstraintImage: ConstraintDominantImage: ConstraintImage: C	Consistency:												
Buffer WidthLeftRightCorridor LandLeftRightLeftRightDominantDominantDominantDominantMass FailuresImage: Sub-dominantHeightImage: Sub-dominantSub-DominantSub-dominantSub-dominantImage: Sub-dominantImage: Sub-d		3.2 Ripa	arian Buffer				3.3 Ri	parian Corrido	r				
DominantDominantMass FailuresSub-DominantSub-dominantHeightW less than 25 6,5023,982 (Legacy)AmountMean HieghtGullies Number0Buffer Vegitation TypeFailuresNoneGullies Length0DominantGulliesGulliesNone0		<u></u>		<u>Right</u>	Corridor Land			•	<u> </u>		<u>Left</u>	<u>Right</u>	
W less than 25 6,502 3,982 (Legacy) Amount Mean Hieght Gullies Number 0 Buffer Vegitation Type Failures None Gullies Length 0 Dominant Gullies None None 0	Dominant			-	Dominant			-	Mass Failu	res		•	
W less than 25 6,502 3,982 (Legacy) Amount Mean Hieght Gullies Number 0 Buffer Vegitation Type Failures None Gullies Length 0 Dominant Gullies None None 0	Sub-Dominant				Sub-dominant				Height				
Buffer Vegitation Type Failures None Gullies Length 0 Dominant Gullies None	W less than 25		6,502	3,982	(Legacy)		<u>Amount</u>	Mean Hieght	U	mber 0			
Dominant Gullies None		Туре	-	-									
	0						None			-			


~			Stream	n Geom	orphic	Ass	essment	V	T DE	C
VERM	ONT		Agency	of Natur	al Reso	uces		Vermont.gov February, 10 2012		-
Phase 2 S	Segment	Sum	mary Repo	ort	Laplatte			rebiu	Page3	
Stream:	McCab	e's Broo	ık	Reach:	T1.0	08-0				
				Step 4. Flo	w & Flow M	lodifier	<u>s_</u>			
4.1 Springs / Se	eeps:		4.5 F	low Regulation	Туре		4.7 Stormwater In	nputs Non e	e	
4.2 Adjacent W	etlands:		Flo	w Reg. Use:			Field Ditch:	Road	d Ditch:	
4.3 Flow Status	:		Im	poundments:			Other:	Tile I	Drain:	
4.4 # of Debris	Jams: 1		Imp	poundment Loc.	.:		Overland Flow:	Urb S	Strm Wtr P	ipe:
			4.6 U	p/Down Strm flo	ow reg.:		4.9 # of Beaver D	ams:		0
	(old) Upstrm Flow Reg.: Affected Leng				h (ft):		0			
4.8 Channel Co	nstrictions:		Step	5. Channel E	Bed and Pla	anform	Changes			
5.1 Bar Types	Diagonal:	5	.2 Other Feature	S	Neck Cutoff	: 0	5.4 Stream Ford or Animal Cr	ossing:	No	
Mid:	Delta:		Flood chutes:	0	Avulsion:	0	5.5 Straightening:	Straigh	ntening	
Point:	Island:	5	.3 Steep Riffles a	and Head Cuts	Head Cuts:	0	Straightening Length (ft.):	8,412		
Side:	Braiding:	0	Steep Riffles:	0	Trib Rejuv.:		5.5 Dredging:	None		
			<u>S</u>	tep 6. Rapid	Habitat Ass	sessme	ent Data			
6.1 Epifaunal S	ubstrate - Avl	.:	6.4 S	ediment Depos	ition:		Stream Gradiant Type		<u>Left</u>	<u>Right</u>
6.2 Pool Substr	ate:		6.5 C	hannel Flow St	atus:		6.8 Bank Stability:			
6.3 Pool Variab	ility:		6.6 C	hannel Alteratio	on:		6.9 Bank Vegetation Protectio	n		
Total Score:			6.7 C	hannel Sinuosi	ty:		6.10 Riparian Veg. Zone Widt	h:		
Habitat Rating:										
Habitat Stream	Condition:									
			Step	7. Rapid Geo	omorphic A	ssessn	nent Data			
Confinement Ty	/pe		Score	•	listoric					
7.1 Channel De	gradation					Geomo	rphic Rating			
7.2 Channel Ag	-						el Evolution Model			
7.3 Widening C	hannel					Channe	el Evolution Stage			
7.4 Change in F	Planforml					Geomo	rphic Condition			
						•	0			

Total Score

Stream Sensitivity

Appendix	C: Page 1	Stream Geor	norphic A	ssessment	VT DEC
VERMON	NT A	Agency of Natu	Iral Resouce	S	Vermont.gov
	Bridge Summ			-	August, 11 2011 Laplatte
			neral Information		
SgalD	100001000004131	Local SgalD		VOBCIT struct_num	990001000204131
Observers Town Location	JSC Shelburne Bay Road at mouth	Assessment Dat Latitude I of LaPlatte River at La	44.39852	Project Name Longitude Reach VTID	Laplatte -73.2344 M01
Road Name	BAY RD	Road Type	Paved	Stream Name	LaPlatte River
High Flow Stage	No		Channel W Bridge Information		78
Bridge Width	30		Material		Concrete
Bridge Clearance Bridge/Arch Spar			Number of	bridge piers/arches	0
Dhagon ton opar			Skewed to		No
	General		morphic Information	<u>)</u>	
	roadway approaches <u>Upstrear</u>	Entirely	Structure is	ocated at significant break in v	alley slope No
	opening of the structure immediately upstream			stance avulsion would follow ro eam flow approaching structure	oad Naturally Straight
If channel avulses,		Cross Road			
Downstream bank I	<u>Downstrea</u> diately downstream of s heights are substantiall		Yes ank No		
heights Pool Depth at point	of streamflow entry		Yes		
		Lin	stroam	<u>Downstream</u>	In Structure
Dominant Bed I	Matorial		i <u>stream</u> I known	Unknown	Unknown
Bedrock Preser		UI UI	No	No	No
Type of Sedime			None	None	None
				None	None
Elevation of sec bankfull	diment deposits >=	1/2	No	No	No
Bank Erosion			None	None	
Hard Bank Arm	oring		Intact	Intact	
Stream bed sco undermining are structure			None	None	
Beaver Dam ne	ear Structure		No	No	
Beaver Dam dis	stance (ft.)				
			Vegetation		
		Up	stream	<u>Downstream</u>	In Structure
Dominant Vegeta	ation Type - Left	Deciduous		Herbaceous/Grass	
Dominant Vegeta Right		Herbaceous	s/Grass	Herbaceous/Grass	
	hrub/forest vegetatio	n 50 ft. wide start with	n 25 ft. of the struc	ture and extend at least 500) ft. up/downstream?
Vegitation Band -	- Left		Yes	No	
Vegitation Band -	Right		No	No	
			<u>Wildlife</u>		
		<u>F</u>	<u>Roadkill</u>	Outside Structure	Inside Structure
Species			None	None	None
			ther Information		
Spatial location dat	a collected with GPS?	Yes	Photos take	n? No	

Comments Spalling concrete on upstream abutments. Backwatered from Lake Champlain.

Agency of Natural Resouces

Vermont.gov

August, 11 2011

Comments Structure recently replaced. Sidewalk over downstream side, extending ceiling over wingwalls. Reported longer length including sidewalk.

Appendi	x C: Page 4 St	ream Geomor	phic Assess	ment	VI	DEC
VERMO	NT Ag	ency of Natural	Resouces			rmont.gov t, 11 2011
1	Bridge Summa	rv Report				platte
-			Information			
SgalD	99000000004133	Local SgalD		VOBCIT		
Observers Town Location	JSC, BG Shelburne behind Shelburne Mus path connects to Lime	Latitude 44 seum. Downstream of Rai	27/2011 I.37289 Ilroad Bridge. Grass	struct_num Project Name Longitude Reach VTID	Laplatte -73.23933 T1.04	
Road Name High Flow Stage			ail Channel Width	Stream Name	McCabes Bro	ook 18.4
Dridge Midth	14	Bridg	<u>ge Information</u> Material		Concr	oto
Bridge Width Bridge Clearanc	e 6.5		Number of bridge p	oiers/arches	1	
Bridge/Arch Spa	ın 17		Skewed to roadwa	γ?	No	
	Conservation	<u>Geomorph</u>	ic Information	5		
Floodplain filled by	<u>General</u> y roadway approaches Upstream	Entirely	Structure is located a	at significant break in v	alley slope	No
	e opening of the structure t immediately upstream of	Wood debris No		vulsion would follow re approaching structure		Mild Bend
If channel avulses		Cross Road				
Downstream bank	<u>Downstream</u> ediately downstream of strue heights are substantially hi		No No			
heights Pool Depth at poir	nt of streamflow entry		Yes			0
		Upstrea	0 ft. m	<u>Downstream</u>		In Structure
Dominant Bed	Material	Grav		Gravel		Gravel
Bedrock Prese			lo	No		No
Type of Sedim		Sid		Delta,Side		Side
	diment deposits >= 1/	2 N	lo	Yes		No
bankfull Bank Erosion		Hig	ıh	Low		
Hard Bank Arn	noring	Nor		None		
Stream bed sc	0	Footers,Wing wall		Footers		
Beaver Dam n	ear Structure	Ν	lo	No		
Beaver Dam d	istance (ft.)		0	0		
		Veg	etation			
		Upstrea	<u>m</u>	Downstream		In Structure
Dominant Veget	ation Type - Left	Shrub/Saplin	g	Mixed Forest		
Dominant Veget Right	ation Type -	Herbaceous/Gras	S	Mixed Forest		
	-	0 ft. wide start within 25 f) ft. up/downstre	am?
Vegitation Band		Ye		Yes		
Vegitation Band	-Right	Ye		Yes		
			<u>/ildlife</u>			
Chooler		<u>Roadk</u>		side Structure	Insi	de Structure
Species		Nor		None		None
Spatial location da	ta collected with GPS? Ye		nformation Photos taken?	Yes		

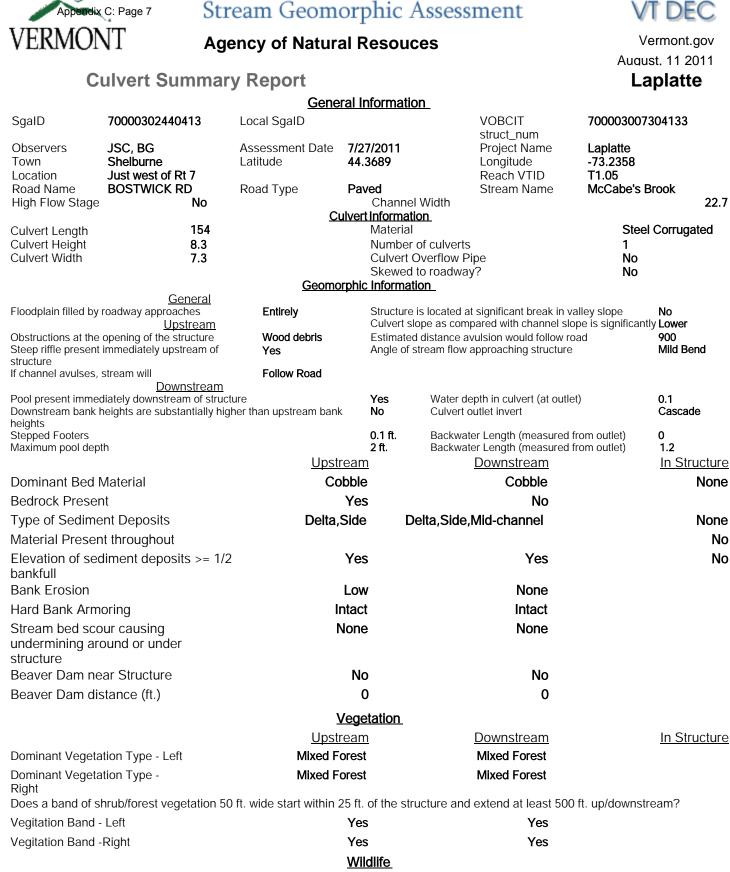
VT DEC

Vermont.gov August, 11 2011

Comments Ownership unknown. No trespassing signs posted on west side of bridge. Path mowed grass.

Culvert Summary Report

Stream Geomorphic Assessment


Vermont.gov August, 11 2011

Laplatte

Agency of Natural Resouces

Comments

•	divort Odimina	y nopon				apiatto
		<u>Gener</u>	al Informat	<u>ion</u>		
SgalD	70000000404133	Local SgalD		VOBCIT		
Observers	JSC, BG	Assessment Date	7/27/2011	struct_num Project Name	Laplatte	
Town	Shelburne	Latitude	44.36966	Longitude	-73.23877	
Location	Downstream of Bostwi			Reach VTID	T1.05	
Road Name	No	Road Type	Railroad	Stream Name el Width	McCabes	Brook 22.7
High Flow Stage	e No	Cu	Ivert Informa			22.1
Culvert Length	87	<u></u>	Materia		Cor	ncrete
Culvert Height	12.4			er of culverts	1	
Culvert Width	11.9			t Overflow Pipe d to roadway?	No No	
		Geomo	phic Inform		NO	
Electricity filled by	<u>General</u>	Entirch	Ctructur	e is leasted at significant break		No
Floodplain filled by	roadway approaches <u>Upstream</u>	Entirely		e is located at significant break slope as compared with chann		
	e opening of the structure	None	Estimat	ed distance avulsion would foll	ow road	-
Steep riffle presen structure	t immediately upstream of	Yes	Angle o	f stream flow approaching strue	cture	Naturally Straight
If channel avulses		Cross Road				Straight
Pool present imme	Downstream diately downstream of strue	aturo	Yes	Water depth in culvert (at	outlet)	0.1
Downstream bank	heights are substantially high	gher than upstream bank		Culvert outlet invert	outiety	Free Fall
heights Stepped Footers			0.6 ft.	Backwater Length (measu	red from outlet)	0
Maximum pool dep	oth		1.1 ft.	Backwater Length (measure		0.8
		<u>Upstr</u>	<u>eam</u>	<u>Downstream</u>		In Structure
Dominant Bed	Material	Со	bble	Cobble		None
Bedrock Prese	nt		No	No		
Type of Sedim	ent Deposits	Side,Mid-char	nnel	Mid-channel		None
Material Prese	•					No
	diment deposits >= 1/	2	Yes	No		No
bankfull	I					
Bank Erosion		Ν	lone	Low		
Hard Bank Arn	noring	N	lone	None		
Stream bed sc	our causing	Ν	lone	None		
undermining a	round or under					
structure						
Beaver Dam n			No	No		
Beaver Dam d	stance (ft.)		0	0		
		<u>v</u>	egetation			
		<u>Upstr</u>	<u>eam</u>	Downstream		In Structure
Dominant Veget	ation Type - Left	Deciduous Fo	orest	Shrub/Sapling		
Dominant Veget	ation Type -	Deciduous Fo	orest	Mixed Forest		
Right			- 0 - 0 -			
	-	0 ft. wide start within 2		tructure and extend at least	500 ft. up/downs	stream?
Vegitation Band			Yes	Yes		
Vegitation Band	-Right		Yes	Yes		
			<u>Wildlife</u>			
		Roa	<u>adkill</u>	Outside Structure	<u> </u>	nside Structure
Species			None	None		None
		Othe	r Informatio	<u>on</u>		
Spatial location da	ta collected with GPS? No		Photos		Yes	

Spatial location data collected with GPS? No

Species

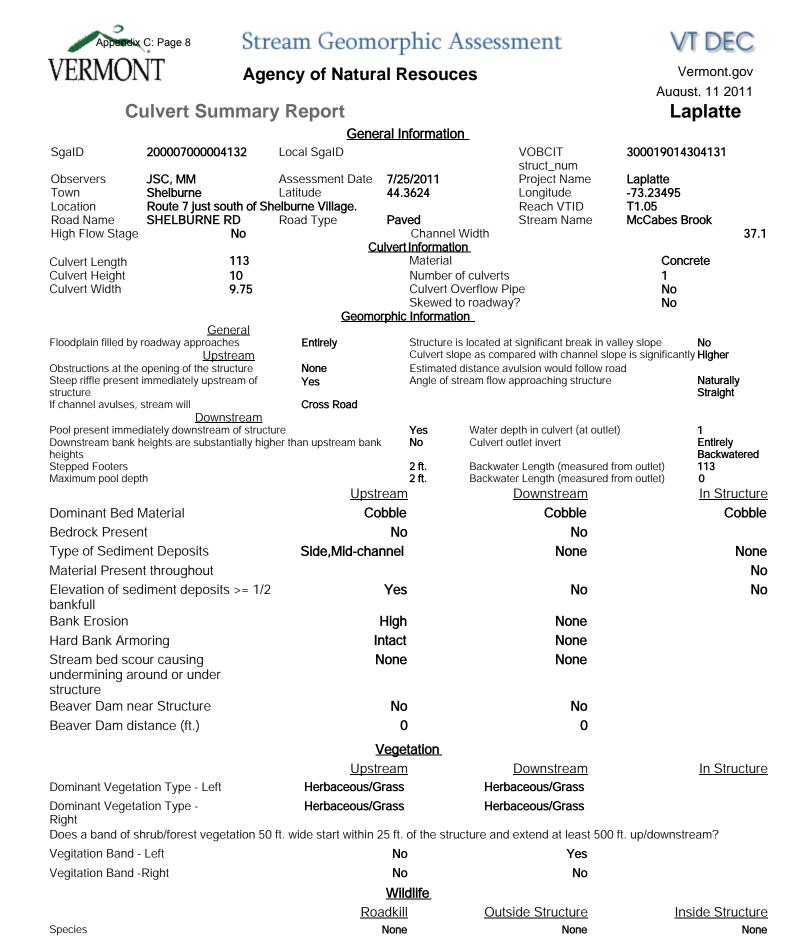
Photos taken?

Yes

None

Inside Structure

None


Outside Structure

Comments Large sediment deposits upstream.

Roadkill

None

Other Information

Other Information Photos taken?

Spatial location data collected with GPS? No

Comments an apron at the upstream end is included in the length.

VT DEC • 103 South Main Street • Waterbury, VT 05671

Yes

Culvert Summary Report

Stream Geomorphic Assessment

Agency of Natural Resouces

VT DEC

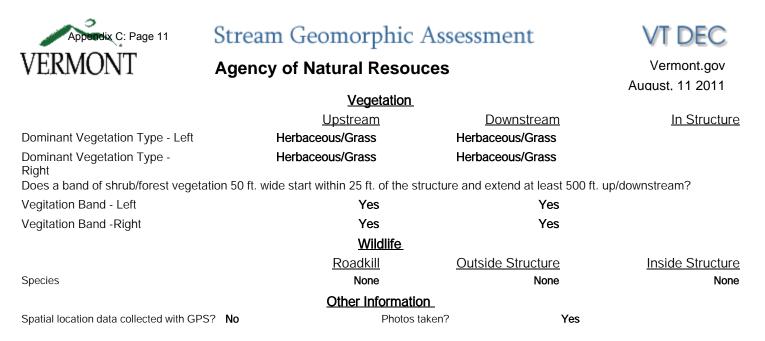
Vermont.gov August, 11 2011 Laplatte

0		yncepon				-	aplatte
		<u>Gene</u>	ral Inform	ation_			
SgalD	70000000004133	Local SgaID			VOBCIT		
Observers Town Location Road Name	JSC Shelburne Teddy Bear Factory Ac	Assessment Date Latitude ccess Road Road Type	5/18/2010 44.36104 Paved		struct_num Project Name Longitude Reach VTID Stream Name	Laplatte -73.23384 T1.05 McCabes	
High Flow Stage	No		Char	nnel Width	ou our runno		37.1
	100	<u>Cı</u>	ulvert Inform			Cha	
Culvert Length Culvert Height	128 9		Mate Num	ber of culverts		5te 1	el Corrugated
Culvert Width	13			ert Overflow Pi	ipe	No	
		Coomo		ed to roadway	?	No	
	General	Geomo	rphic Infori	nation_			
Floodplain filled by	roadway approaches <u>Upstream</u>	Entirely	Culve	rt slope as com	t significant break in va bared with channel slo	pe is significal	No htly Same
	opening of the structure immediately upstream of	None			/ulsion would follow ro approaching structure	ad	Naturally
structure If channel avulses,		No Cross Road	Angle				Straight
Dool procent imme	Downstream diately downstream of struc	turo	Vac	Water de	epth in culvert (at outle	+)	0.2
	heights are substantially hig		Yes No		outlet invert	()	Free Fall
Stepped Footers	th		1.1 ft.		er Length (measured f		0.4
Maximum pool dep	uri	Upsti	3 ft. ream	Backwal	er Length (measured f Downstream	rom outlet)	In Structure
Dominant Bed	Material	•	avel		Gravel		Gravel
Bedrock Prese			No		No		Claro
Type of Sedime		Ν	None		None		None
Material Preser	•	•			None		No
	diment deposits >= 1/2)	No		No		No
bankfull Bank Erosion			None		Low		110
	oring		ntact		Intact		
Hard Bank Arm	0		None		Culvert		
Stream bed sco undermining ar structure		I	NOTIC		Cuiven		
Beaver Dam ne	ear Structure		No		No		
Beaver Dam di	stance (ft.)						
		Y	/egetatior	<u>1</u>			
		<u>Upstr</u>	<u>ream</u>		<u>Downstream</u>		In Structure
Dominant Vegeta	ation Type - Left	Herbaceous/G	irass		Shrub/Sapling		
Dominant Vegeta Right	ation Type -	Herbaceous/G	irass	:	Shrub/Sapling		
	hrub/forest vegetation 5	0 ft. wide start within 2	25 ft. of the	structure and	extend at least 500	ft. up/downs	tream?
Vegitation Band	- Left		No		No		
Vegitation Band	-Right		No		No		
			<u>Wildlife</u>				
		Roa	adkill	<u>Ou</u> ts	ide Structure	li	nside Structure
Species			None		None	—	None
		Othe	er Informa	tion			
Spatial location dat	a collected with GPS? No			s taken?	Yes		

Comments Upstream has 16 foot flat apron - slime covered. Upstream of culvert riprap extends 100 feet.

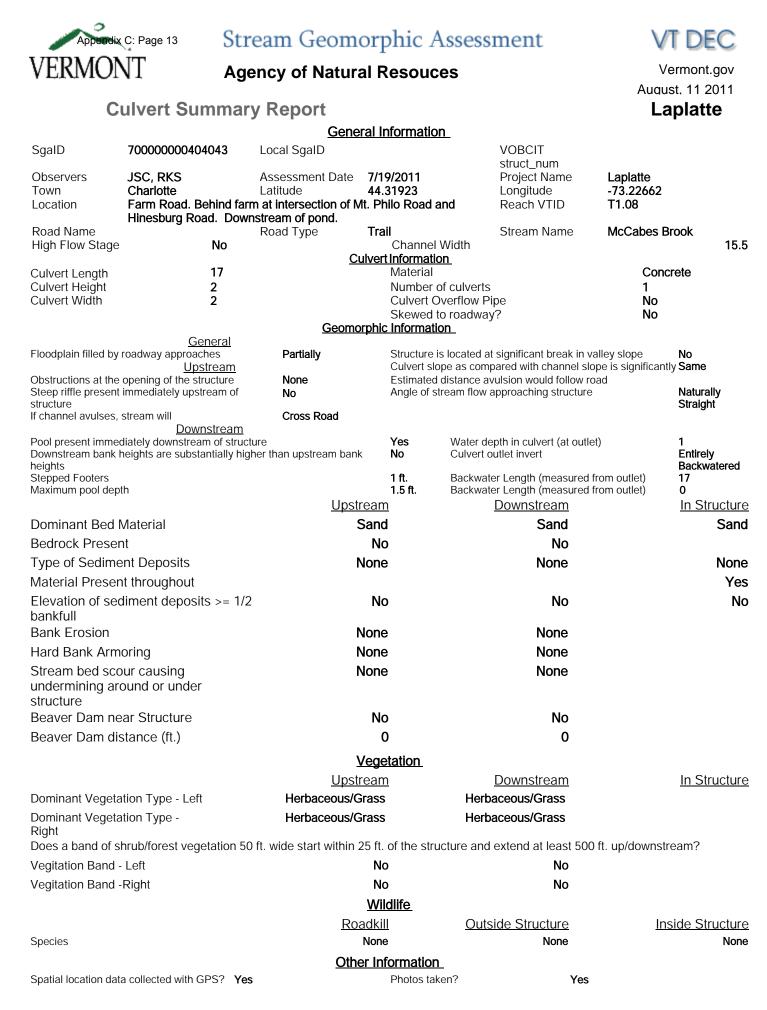
Agency of Natural Resouces

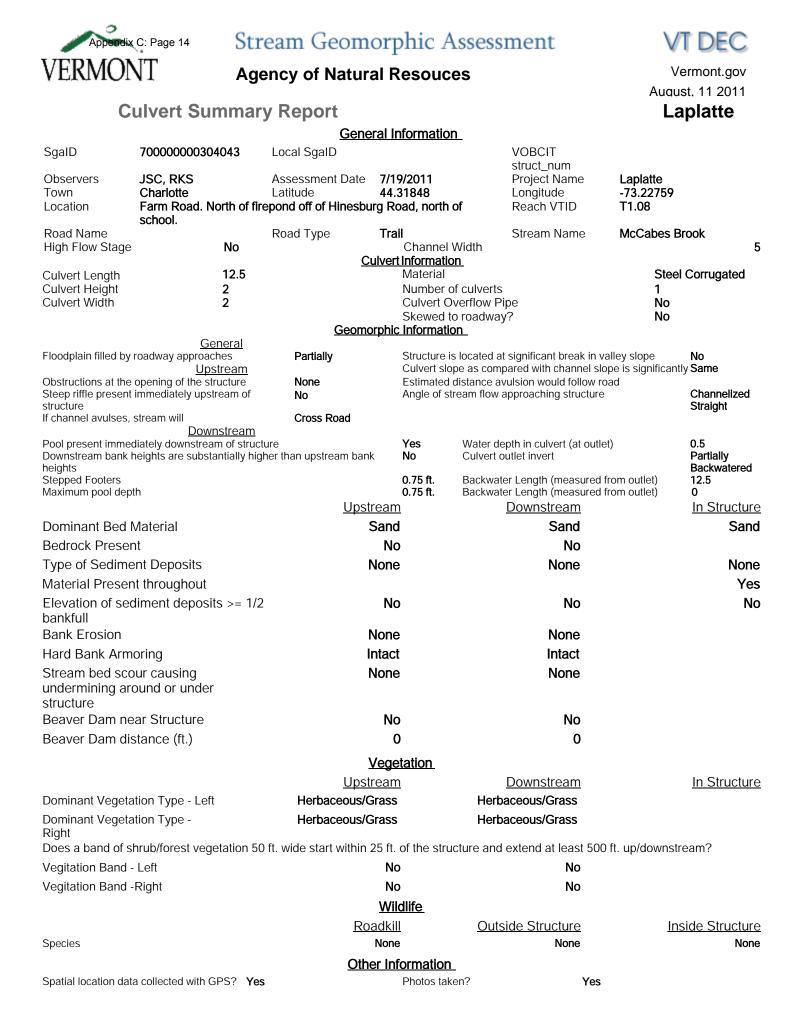
Vermont.gov

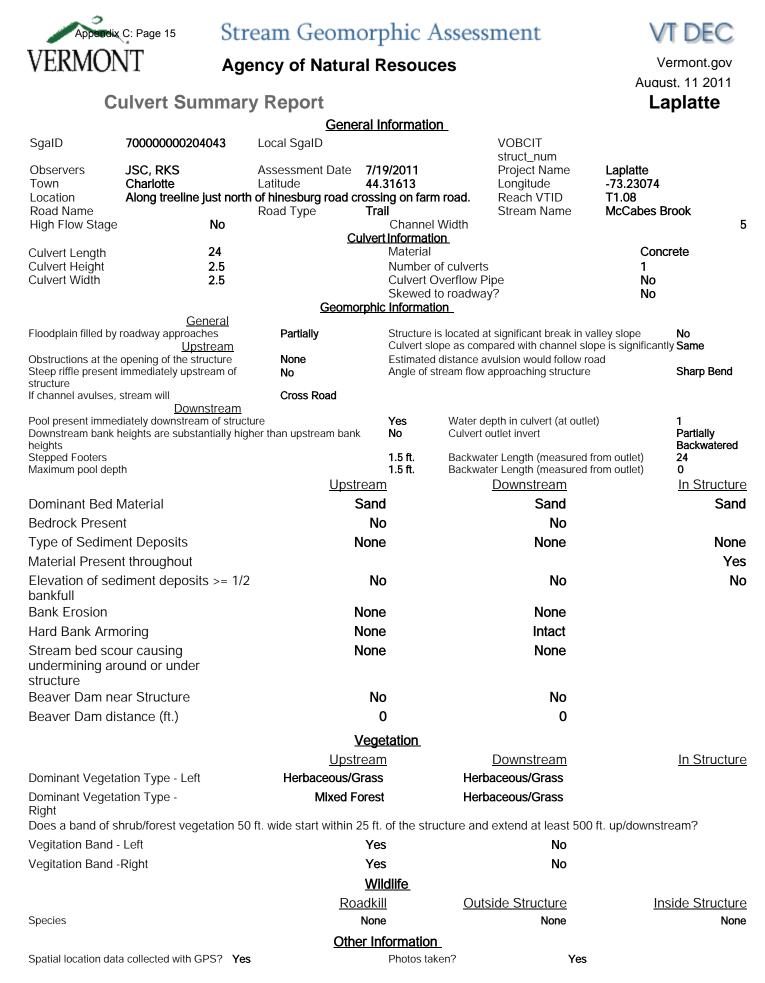

August, 11 2011

Comments Flow is going under a section of the concrete arch bottom. This structure is made of masonry and the bottom was at one point coated with concrete that is now breaking apart and allowing flow under it.

Culvert Summary Report

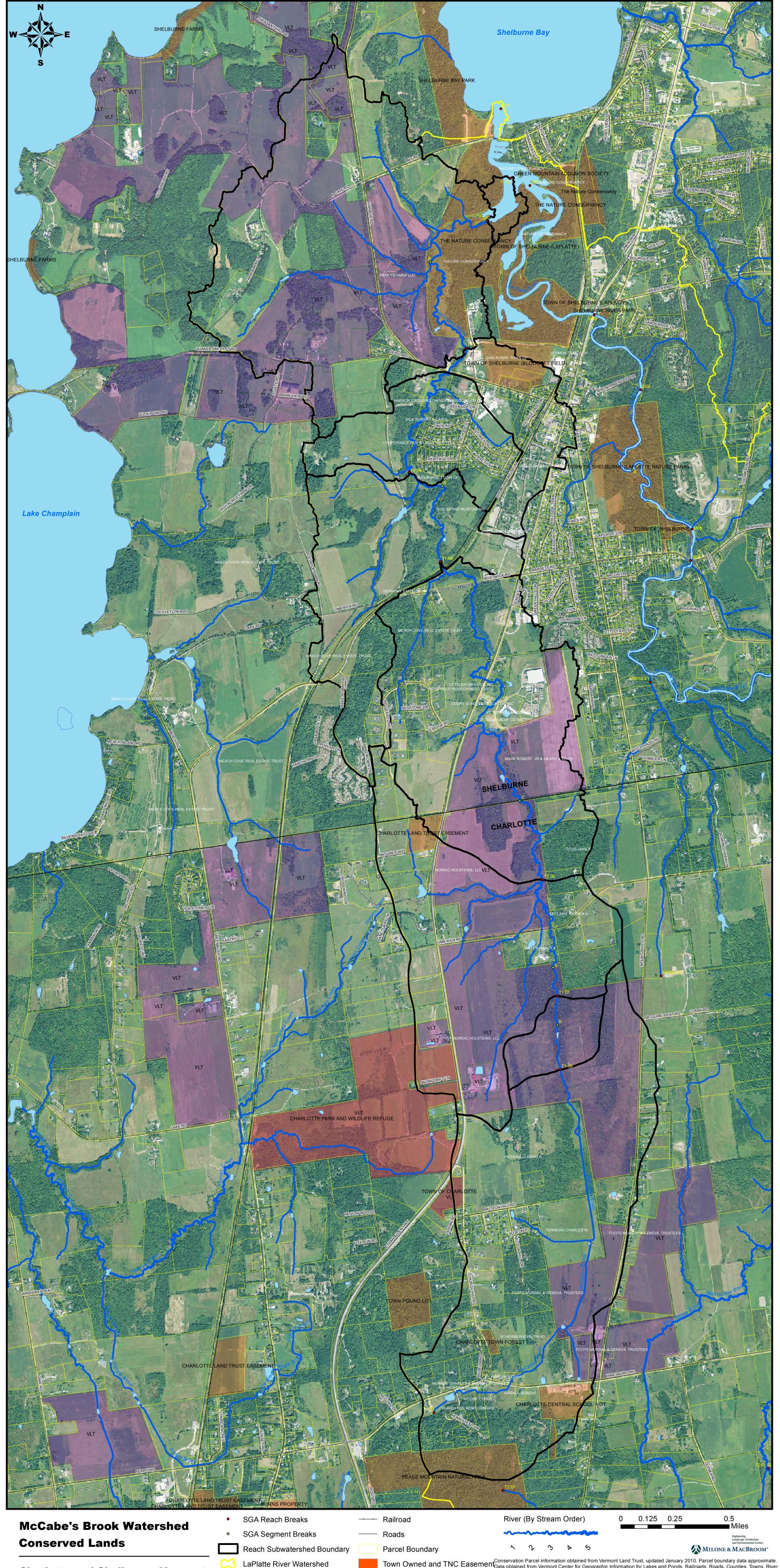

Laplatte


			al Informatio	<u>n</u>		
SgalD	70001202800404	Local SgalD		VOBCIT struct_num	700012031	304043
Observers	JSC		7/15/2011	Project Name	Laplatte	
Town	Charlotte		44.346	Longitude	-73.229	
Location	Approx 0.5 mi east of R Road.	t 7 and 0.5 miles wes	t of Mount Ph	ilo Reach VTID	T1.06	
Road Name	LIME KILN RD	Road Type	Gravel	Stream Name	McCabe's I	Brook
High Flow Stage	No		Channel			7
	10	<u>Cu</u>	Ivert Informati	<u>on</u>	Chao	
Culvert Length	40		Material	of outvorto	Stee 1	l Corrugated
Culvert Height Culvert Width	4 4		Number of culverts Culvert Overflow Pipe		No	
	7			Skewed to roadway?		
		Geomor	phic Informati		No	
	General		-			
Floodplain filled by roadway approaches <u>Upstream</u>		Entirely			at significant break in valley slope No apared with channel slope is significantly San	
Obstructions at the	opening of the structure	Sediment,Deform n,Wood debris		distance avulsion would follow		-
Steep riffle present structure	immediately upstream of	No			e	Naturally Straight
If channel avulses,		Cross Road				Straight
Pool present imme	<u>Downstream</u> diately downstream of struct	ure	Yes	Water depth in culvert (at out	let)	1
Downstream bank heights are substantially higher			No	Culvert outlet invert		Entirely
heights Stepped Footers			1 ft.	Backwater Length (measured	t from outlet)	Backwatered 40
Maximum pool dep	th		> 4.0 ft.	Backwater Length (measured		0
		Upstre	<u>eam</u>	<u>Downstream</u>		In Structure
Dominant Bed I		S	and	Sand		Sand
Bedrock Preser			No		Νο	
Type of Sedime		Delta,S	Side	Side		None
Material Preser	nt throughout					Yes
Elevation of sec bankfull	diment deposits >= 1/2		Yes	No		No
Bank Erosion		ŀ	High		None	
Hard Bank Armoring		Ν	None			
Stream bed scour causing		Cul	Culvert			
undermining ar		Cu		None		
structure						
Beaver Dam ne	ar Structure		No	No		
Beaver Dam dis			0	0		
			U	0		



Comments Culvert has failed. Upstream end is tipped down into channel. Erosion is gouging into roadway surface.

-		ream Geomo	rphic	Assessm	nent	V	T DEC	
VERMONT Age		gency of Natura	ncy of Natural Resouces				Vermont.gov	
Culvert Summary Report							st. 11 2011	
C	uivent Summa		linformat	lon		Lč	aplatte	
SgalD	70000000504043	Local SgalD	al Informat		/OBCIT			
Observers	JSC, RKS		7/19/2011	S	struct_num Project Name	Laplatte		
Town	Charlotte	Latitude	44.32803	L	ongitude	-73.22492 T1.08		
Location Road Name	Farm Road. At treelin		e with Mutton Hill Road. ad Type Trail		Reach VTID Stream Name		rook	
High Flow Stage	No	51	Channe	el Width			15.5	
Culvert Length	19.75		vert Informa Materia			Stee	l Corrugated	
Culvert Height2Culvert Width2				r of culverts			0	
			Culvert Overflow Pipe Skewed to roadway?			No No		
	Conorol	Geomorr	ohic Informa					
Floodplain filled by	<u>General</u> roadway approaches Upstream	Partially			gnificant break in va ed with channel slop		No ly Same	
Obstructions at the opening of the structure Steep riffle present immediately upstream of		None No	None Estimated distance avulsion would follow		sion would follow roa		Naturally	
structure If channel avulses,	stream will	Cross Road	Cross Road			Straigh		
Pool present imme	<u>Downstream</u> diately downstream of stru		Yes	Water dept	h in culvert (at outlet))	1	
Downstream bank		igher than upstream bank	No	Culvert out		, ,	Entirely Backwatered	
heights Stepped Footers			1 ft.		Length (measured fr	om outlet) 19.75		
Maximum pool dep	DIN	Upstre	1.5 ft. am		Length (measured fro ownstream	om outlet)	0 <u>In Structure</u>	
Dominant Bed Material		•	Sand		Sand		Sand	
Bedrock Present			No		No			
Type of Sedime	ent Deposits	Να	None		None		None	
Material Present throughout							Yes	
Elevation of se bankfull	diment deposits >= 1	/2	No		No		No	
Bank Erosion			None		None			
Hard Bank Arm	0		None		None			
Stream bed scour causing undermining around or under		Να	None		None			
structure Beaver Dam near Structure			No		No			
Beaver Dam di	stance (ft.)		0		0			
		Ve	egetation					
		Upstre	•	<u>D</u>	<u>ownstream</u>		In Structure	
Dominant Vegetation Type - Left		Herbaceous/Gra	Herbaceous/Grass		Deciduous Forest			
Dominant Vegetation Type -		Herbaceous/Gra	Herbaceous/Grass		Deciduous Forest			
Right Does a band of shrub/forest vegetation 50 ft. wide start within 25 ft. of the structure and extend at least 500 ft. up/downstream?								
Vegitation Band	•		No		Yes	1		
Vegitation Band			No		Yes			
		<u> </u>	<u>Wildlife</u>					
		Road	<u>dkill</u>	<u>Outsid</u>	<u>e Structure</u>	<u>In</u>	side Structure	
Species		Ν	one		None		None	
Other Information								
Spatial location dat	ta collected with GPS? Y	es	Photos t	taken?	Yes			



Comments Farm Road.

Appendix C: Page 16	am Geomorphic Assessment				VT DEC			
VERMONT Age		ency of Natural Resouces				Vermont.gov		
					August, 11 2011			
Culvert Summary Report							Laplatte	
SgalD 10000200000	4041 Loc	<u>General</u> al SgalD	Information	<u>n</u>	VOBCIT	70000200	6404043	
Observers JSC, RKS	Ass	essment Date 7/	19/2011		struct_num Project Name	Laplatte		
Town Charlotte	Lati	tude 44	.31522		Longitude	-73.23145	5	
Location between Chu Road Name HINESBURG		nd Mt. Philo Rd. ad Type Pa	aved		Reach VTID Stream Name	T1.08 McCabes	Brook	
High Flow Stage	Νο	Culve	Channel V ert Informatio				5	
Culvert Length	47		Material	<u>) </u>		Pla	stic Corrugated	
Culvert Height 2		Number of culverts			1 No			
Culvert Width 2		Culvert Overflow Pipe Skewed to roadway?		No				
C	eneral	<u>Geomorph</u>	ic Informatio	<u>on</u>				
Floodplain filled by roadway approa		Entirely			significant break in va ared with channel slop		No ntly Same	
Obstructions at the opening of the si Steep riffle present immediately ups structure	tructure tream of	NoneEstimated distance avulsion would follow roNoAngle of stream flow approaching structure		ad	Naturally			
If channel avulses, stream will		Cross Road					Straight	
Dow Pool present immediately downstrea	<u>nstream</u> am of structure		Yes	Water dep	oth in culvert (at outlet))	1	
Downstream bank heights are subst heights	antially higher that	an upstream bank	No	Culvert ou	itlet invert		Entirely Backwatered	
Stepped Footers			1 ft.		r Length (measured fr		47	
Maximum pool depth		<u>Upstrea</u>	1.5 ft. <u>m</u>		r Length (measured fr <u>Downstream</u>	om outlet)	o <u>In Structure</u>	
Dominant Bed Material		Sand		Sand			Sand	
Bedrock Present		No		No				
Type of Sediment Deposits		None		None			None	
Material Present throughout		_	_				Yes	
Elevation of sediment deposi	ts >= 1/2		lo		No		No	
Bank Erosion		Nor			None			
Hard Bank Armoring		None None		None None				
Stream bed scour causing undermining around or under structure	-	NOF	le		None			
Beaver Dam near Structure		Ν	lo		No			
Beaver Dam distance (ft.)			0		0			
Vegetation								
		<u>Upstrea</u>		<u>[</u>	<u>Downstream</u>		In Structure	
Dominant Vegetation Type - Lef	t	Herbaceous/Gras	S	Herba	ceous/Grass			
Dominant Vegetation Type - Right		Herbaceous/Grass Herb		Herba	ceous/Grass			
Does a band of shrub/forest vegetation 50 ft. wide start within 25 ft. of the structure and extend at least 500 ft. up/downstream?								
Vegitation Band - Left		Ν	lo		No			
Vegitation Band -Right			10		No			
			<u>'ildlife</u>					
Creation		<u>Roadk</u>		<u>Outsi</u>	de Structure	<u> </u>	nside Structure	
Species		Noi			None		None	
Spatial location data collected with 0	GPS? Yes	<u>Other li</u>	nformation Photos tak		Yes			

Comments Lots of iron oxide in downstream channel.

Charlotte and Shelburne, Vermont January 2012

Lakes and Ponds

Towns

Town Owned and TNC Easement Data obtained from Vermont Center for Geographic Information for Lakes and Ponds, Railroads, Roads, Counties, Towns. River Data obtained from Vermont Center for Geographic Information for Lakes and Ponds, Railroads, Roads, Counties, Towns. River information from Vermont Hydrography Dataset. LaPlatte River Watershed delineated by Milone & MacBroom, Inc. Reach and Segment breaks identified during Vermont Agency of Natural Resources Stream Geomorphic Assessment. Background aerial photographs taken in 2008 by National Agricultrual Inventory Program. Map intended for planning purposes only.